A. Endommagement

I. Introduction

L'endommagement est l'apparition dans un matériau de dommages causés par l'usure ou une attaque physique ou chimique. Il conduit à une dégradation de ses capacités physiques pouvant conduire à la rupture.

L'endommagement se traduit dans le matériau par la formation (phase d'amorçage) et le développement (phases de croissance et de coalescence) de cavités. Dans la mécanique des milieux continus, un solide est supposé ne posséder ni trou, ni interface. Pour cela, on fait l'hypothèse que l'élément de volume considéré est suffisamment grand devant les dimensions des cavités dues à l'endommagement.

Soit la section dS contient des traces de microfissures et de cavités constituant l'endommagement du matériau.

En notant dS_D la surface projetée sur dS des traces d'endommagement, on mesure l'endommagement local, dans la direction n, par le rapport entre la surface dS_D et la surface dS.

$$D = \frac{dS_D}{dS}$$

Cet endommagement vaudra 0 pour un matériau non endommagé, et 1 pour un matériau totalement rompu perpendiculairement à n. En conséquence, la variable d'endommagement ainsi définie :

- dépend de la direction n considérée dans le matériau,

– est un scalaire toujours compris entre 0 et 1.

Si l'endommagement est isotrope, c'est-à-dire identique dans toutes les directions de l'espace. Il s'en suit que la variable de l'endommagement ne dépend pas de n, car les fissures et les cavités sont supposées uniformément distribuées par rapport à toutes les directions de l'espace.

On sait que la force appliquée $F=\sigma.n.dS$. La contrainte effective, c'est-à-dire celle effectivement subit localement par le matériau, agit sur la surface effective n (dS-dS_D) = n dS(1-D). On en déduit que $F=\sigma_D.n.dS.(1-D)$ et donc que le tenseur de contraintes effectives vaut :

$$\overrightarrow{\sigma_D} = \frac{\overrightarrow{\sigma}}{1-D}$$

II. Mesure de l'endommagement

I l existe deux grandes familles de méthodes de mesure. Dans la première, on réalise des mesures directes par observation microscopique. Dans la seconde, on effectue des mesures indirectes en utilisant un paramètre physique.

1. Mesures directes

Les mesures directes de l'endommagement peuvent se faire de différentes façons. On peut par exemple observer la surface d'un échantillon déformé qui avait été préalablement poli. Pour observer le cœur de l'échantillon, on peut également sectionner une éprouvette déformée. Enfin, on peut également observer le faciès de rupture de l'éprouvette.

2. Mesures indirectes

Les mesures indirectes de l'endommagement sont basées sur l'estimation d'un paramètre physique du matériau déformé ou en cours de déformation. Ce paramètre physique doit bien sûr être relié à l'endommagement. Comme exemple : le module d'Young et le coefficient de Poisson pour un matériau isotrope.

La mesure de la variation du module d'Young lors de déchargements successifs au cours d'un essai de traction montre que ce module diminue lorsque la déformation augmente. Si F est la force de traction appliquée à l'échantillon, σ la contrainte, S sa section courante, et S – S_D sa section effective, alors on peut écrire :

$$\sigma_D = E_i \varepsilon_e$$
 et $\sigma = E \varepsilon_e$

 ϵ_e est la déformation élastique, E est le module d'Young mesuré (apparent), et E_i est le module d'Young initial du matériau.

On déduit de ces relations que, en mesurant E_i lors du premier chargement, puis E lors des chargements successifs, on obtient une estimation de l'endommagement du matériau par :

$$D = 1 - \frac{E}{E_i}$$

Cette mesure est difficile car :

_ Il faut une bonne précision sur des déformations très petites ;

 $_$ l'endommagement est souvent très localisé d'où une base de mesure très faible (0,5 à 5 mm) ;

_ la droite (σ , ϵ) est généralement difficile à définir.

D'autres méthodes existent telles que :

la mesure de densité

- l'émission acoustique

- les méthodes électriques

III. Types d'endommagement

Il existe plusieurs types d'endommagement :

1. Endommagement par clivage

Le clivage est l'aptitude de certains matériaux à se fracturer selon des surfaces planes dans des directions privilégiées lorsqu'ils sont soumis à un effort mécanique (un choc ou une pression continue).

Soit un polycristal susceptible de se cliver (ex : zinc, fer avec alliage cubique centré). Dans ce cas, les plans cristallographiques de clivage sont les faces du cube (les plans {100}). Les différents germes possèdent des orientations différentes. Nous avons ici deux cas : Les clivages ne peuvent pas se propager dans les voisins qui ont des orientations défavorables et ils se bloquent sur les joints de grains. Un endommagement est bien alors créé : les surfaces des grains clivés diminuent la section portante.

Dans d'autres cas, au contraire, plutôt plus fréquents, les clivages apparus dans les germes les plus favorablement orientés réussissent à se propager dans les grains voisins, au prix d'une certaine désorientation, et de proche en proche, de façon brutale, provoquent la rupture du polycristal.

Fig. 1.8. (a) Clivages bloqués sur des joints de grains. (b) Clivages se propageant de grains en grains jusqu'à rupture.

2. Endommagement ductile par cavitation

Soit maintenant un polycristal d'un matériau qui n'est pas susceptible de se cliver, du cuivre par exemple, ou encore un alliage d'aluminium, tous matériaux CFC. Certains germes vont se déformer par des glissements et soumettre donc leurs voisins, qui eux restent élastiques, à des contraintes importantes. Ainsi les déformations par glissements vont se propager de proche en proche et bientôt tout le polycristal se déformera plastiquement. À ce stade, aucune nouvelle surface n'a été créée et il n'y a pas d'endommagement.

La déformation se localise alors dans une partie de l'échantillon qui s'amincit : il est apparu une striction et, si le chargement est à force contrôlée, brutalement la striction devient totale et l'éprouvette se rompt par instabilité plastique. Ce phénomène ne s'accompagne pas d'endommagement.

Cependant, dans la plupart des cas, le développement de la striction est interrompu par la rupture de l'échantillon, avant que la striction ne devienne totale. En dessous de la surface, nous pouvons observer des cavités, allongées dans le sens de la déformation. Leur taille décroît au fur et à mesure que nous nous éloignons de la surface de rupture.

Fig. 1.10. Schéma de la fissuration dans un essai de compression sur un matériau cimentaire.

Lorsque la taille des cavités devient suffisante, la coalescence des cavités provoque la rupture.

Dans une certaine mesure l'endommagement des polymères peut être rattaché à l'endommagement ductile par cavitation. En effet, la déformation plastique des polymères résulte du déplacement des molécules les unes par rapport aux autres, analogue à des glissements dans les cristaux. Il se forme effectivement des cavités, très aplaties, des fissures en quelque sorte, appelées craquelures.

3. Endommagement de corrosion sous contrainte

Le phénomène de corrosion sous contrainte est dû à une combinaison d'une sollicitation mécanique constante et d'un milieu extérieur agressif.

L'endommagement de corrosion sous contrainte nécessite la combinaison de la sollicitation mécanique et du milieu agressif, chacun séparément étant complètement inoffensif. La nature des couples matériau-environnement pouvant donner lieu à la corrosion sous contrainte est très variée. Des acides et des bases, des milieux salins, sont en cause mais de l'eau peut suffire, voire l'humidité de l'air. La naissance de l'endommagement est évidemment superficielle, puisque c'est la surface de la pièce qui est soumise à l'effet du milieu agressif. Les fissures qui y prennent naissance se propagent ensuite vers l'intérieur de la pièce.

4. Endommagement de fluage

L'endommagement de fluage apparaît à haute température, suffisante pour que la vitesse de fluage sous effort constant (c'est-à-dire la vitesse de déformation) ne diminue jamais au cours du temps. Cette température est, en degrés Kelvin, supérieure à la moitié de la température absolue de fusion.

À ces hautes températures, les phénomènes de diffusion sont actifs. Un matériau contient toujours des lacunes. La concentration de lacunes à l'équilibre est fonction exponentielle de la température. Par ailleurs, les lacunes peuvent migrer, et ceci d'autant plus vite que la température est élevée. Lorsque deux lacunes se rencontrent, elles peuvent former une bilacune ; avec une troisième, une trilacune et finalement une cavité.

Dans les conditions de fluage, des cavités sont donc susceptibles de germer, dans la mesure où l'énergie de leur surface est inférieure au travail de la contrainte appliquée au matériau. Les cavités croissent par diffusion de lacunes. Cette croissance intéresse essentiellement les joints qui sont perpendiculaires à la contrainte principale maximale. Ces joints entièrement recouverts de cavités constituent des fissures, d'où résulte un endommagement.

Cependant l'ouverture de ces fissures n'est possible que dans la mesure où le matériau qui les entoure est capable de se déformer, et donc que sa vitesse de fluage est suffisante. Suivant les cas, c'est donc soit la vitesse de diffusion des lacunes le long des joints de grains soit la vitesse de fluage qui contrôle le développement de l'endommagement de fluage.

5. Endommagement par fatigue

La fatigue des matériaux est un phénomène qui survient sous l'effet de sollicitations cycliques. En résumé la fatigue est la rupture sous des sollicitations répétées.

Soit une structure soumise à un effort cyclique agissant jusqu'à la rupture (après un nombre de cycles donné). L'endommagement est imprévisible, il peut naitre (à l'échelle microscopique) souvent à la surface de la pièce comme il peut naitre à l'intérieur. En évoluant il passe par 3 stades :

Amorçage :

A cause de la grande finesse du défaut initié, sa détection n'est possible que si on utilise de puissants équipements de laboratoire. Son initiation peut avoir lieu dans des endroits où l'accès est impossible zone 1.

Propagation :

Sous l'effet du changement cyclique du chargement la fissure initiée commence à prendre des dimensions importantes menant finalement à la ruine.

A ce stade la fissure qui a grandi résultait de la propagation des microfissures causées par le défaut initié dans la première étape, c'est elle qui deviendra la fissure de la fatigue zone 2. **Rupture brutale :**

Lorsque la fissure atteint une distance de telle façon que la section résiduelle est trop faible pour supporter de fortes contraintes résultant d'une concentration au fond de la fissure zone 3.

IV. Endommagement et écrouissage cyclique

1. Définition

L'écrouissage se traduit généralement par un durcissement ou parfois un adoucissement cyclique dans un matériau provenant de la déformation plastique due à une modification structurale, cette opération engendre une augmentation de la résistance (la dureté, la limite d'élasticité) et une diminution de la ductilité (l'allongement, striction)

2. Lois d'écrouissage

La capacité d'un métal à s'écrouir est estimée par le **coefficient d'écrouissage** n : lors d'un essai de traction, on trace la courbe de traction rationnelle c'est-à-dire la courbe : $\sigma=f(\varepsilon)$

Le **taux d'écrouissage**, ou **taux de consolidation**, est défini en chaque point comme étant la pente de la tangente à cette courbe : $d\sigma/d\epsilon$. C'est le surplus d'effort $d\sigma$ qu'il faut fournir pour obtenir une élongation supplémentaire d ϵ .

Si ce taux est élevé, cela signifie que la contrainte σ croît rapidement lorsque la déformation ϵ augmente, c'est-à-dire que la force nécessaire pour continuer à étirer le métal augmente beaucoup.

La courbe de traction peut être décrite par une loi empirique indépendante de la vitesse de déformation. On utilise en général trois types de lois : la loi d'Hollomon (ou loi en puissance), la loi de Ludwig et la loi de Voce :

• loi de Zener-Hollomon : $\sigma = k \cdot \varepsilon^n$; cette loi ne s'appuie que sur deux paramètres k et n

et n'apporte aucune information sur la limite d'élasticité σ_0 n est défini par $n = \frac{d \log \sigma}{d \log \varepsilon}$

• loi de Ludwig : $\sigma = \sigma_0 + k \cdot \varepsilon^n$;

où n est le **coefficient d'écrouissage** ; sa valeur est typiquement entre 0,1 et 0,5.

La loi de Voce s'écrit :

$$\sigma = \sigma_0 \cdot (1 - e^{-A\varepsilon})$$

où σ_0 est la contrainte de saturation (limite de l'élasticité). On peut aussi utiliser une loi de Voce plus complexe :

$$\frac{\sigma - \sigma_s}{\sigma_0 - \sigma_s} = \exp(-A\varepsilon)$$

où σ_s est une contrainte seuil.

Si l'on ne s'intéresse qu'aux faibles déformations plastiques, on utilise souvent une loi bilinéaire.

Lorsque la pièce comporte une variation de section ou un défaut — cavité, inclusion plus dur ou moins dur que le reste du matériau— il peut se produire localement une concentration de contraintes. Alors que l'on pense être dans le domaine élastique, on entre localement dans le domaine plastique.

Il peut donc se produire un écrouissage local. Ce phénomène est une des principales causes de la naissance de fissures dans les phénomènes de fatigue.

3. Mécanisme de l'écrouissage

La déformation plastique d'une pièce métallique se fait par le mouvement des dislocations (défaut linéaire correspondant à une discontinuité dans l'organisation de la structure cristalline). Au cours de la déformation, ces dislocations se multiplient et se gênent mutuellement : si elles sont dans le même plan de glissement, elles s'attirent ou se repoussent, limitant leurs propagations et, si elles sont dans des plans orthogonaux, elles s'épinglent mutuellement. Donc plus il y a de dislocations, plus il y a de déformations possibles, mais moins les dislocations sont mobiles car elles se gênent.

La perte de mobilité des dislocations entraîne une élévation de la limite d'élasticité, donc de la dureté, ce qui constitue l'écrouissage.

Si l'on change la direction de la déformation plastique, l'écrouissage peut aussi à l'inverse *abaisser* la limite d'élasticité : c'est l'**effet Bauschinger**.

Effet Bauschinger

Cyclage en traction-compression : courbe contrainte-déformation avec écrouissage isotrope (gauche) et effet Bauschinger (droite) ; $R_{e1} > R_e > R_{e1}'$.

La gêne mutuelle des dislocations implique un durcissement « isotrope » : la limite d'élasticité s'accroît quel que soit le sens de déformation.

L'effet Bauschinger est l'altération anisotrope de la limite d'élasticité d'un métal ou d'un alliage consécutif à un premier chargement au-delà de la limite d'élasticité vierge (nominale)...

Si l'on déforme un métal dans une direction donnée de telle façon que cela développe une déformation résiduelle permanente, puis qu'on le déforme en sens inverse dans la même direction, on observe que la limite d'élasticité a diminué.

On explique ce phénomène par la distribution de dislocations (défauts linéaires résultant de la déformation plastique) dans les métaux formés à froid : au cours de la déformation, les dislocations se multiplient le long des joints de grain et s'enchevêtrent.

Modèle d'écrouissage isotrope ou cinématique

Représentation de l'écrouissage pour un état de contraintes planes :

- haut : modèle isotrope ;
- bas : modèle cinématique (effet Bauschinger).

Les schémas de gauche utilisent le critère de von Mises, les schémas de droite le critère de Tresca.

On utilise en général deux modèles d'écrouissage.

Dans le premier modèle, dit modèle « isotrope », l'écrouissage correspond à une dilatation de la surface frontière par une homothétie centrée en (0, 0, 0). Cela signifie qu'il y a un durcissement quelle que soit la direction de déformation.

Dans le deuxième modèle, dit « cinématique », la surface frontière ne se déforme pas mais est translatée. Cela signifie qu'il y a un durcissement dans certaines directions, mais un adoucissement dans d'autres directions. Cela correspond à l'effet Bauschinger.

Restauration et recristallisation

La restauration et la recristallisation sont des phénomènes ayant pour effet d'annuler l'écrouissage. Ils sont activés thermiquement ; ils surviennent au cours de traitement thermiques, en particulier de recuits.

La recristallisation ne peut avoir lieu que lorsque l'écrouissage est suffisant : le moteur de la transformation est la quantité d'énergie de déformation élastique « stockée » dans les dislocations. Dans certains cas, lorsque la vitesse de déformation est suffisante (pour un métal et une température donnés), la restauration et la recristallisation peuvent survenir en même temps que l'écrouissage : on parle de restauration et recristallisation dynamiques.

V. Endommagement par fatigue :

- 1. Types de fatigue :
- a. Fatigue des monocristaux

Fig. 1.16. Schéma des glissements successifs par fatigue. Formation (a) d'une marche, (b) d'extrusions et (c) d'intrusions.

Les monocristaux sont favorablement orientés pour le glissement. L'effort de traction sur l'éprouvette monocristalline crée une marche à la surface dans un certain sens (Fig. 1.16). Lorsque nous déchargeons, puis que nous sollicitons en compression, le glissement se fait en sens inverse. La déformation plastique de glissement provoque un certain écrouissage qui crée à la surface soit une excroissance, appelée extrusion, soit une rainure, appelée intrusion. À chaque cycle, ce mécanisme se répète, aboutissant à la formation de nombreuses extrusions et intrusions. Il y a un début d'endommagement.

b. Fatigue des polycristaux

Les grains les plus favorablement orientés pour le glissement sont les premiers à se déformer. Dans ce cas, l'endommagement de fatigue est un endommagement de surface. Cependant, les glissements vont petit à petit se répandre dans d'autres grains en raison de l'écrouissage des premiers. On constate que des fissures de fatigue prennent naissance en divers endroits, à des instants différents.

Les fissures les plus grandes prennent petit à petit le pas sur les autres, et finalement, une seule fissure se propage.

1.19. Fissures de type A et de type B, σ_2 et σ_3 sont les contraintes principales.

c. Fatigue thermique

Ce type d'endommagement par fatigue provient de variations cycliques de la température. Comme l'équilibre de température entre la surface et le cœur de la pièce ne s'établit pas instantanément, il existe des déformations différentielles, cycliques elles aussi. Il en résulte des variations périodiques de contrainte qui donne naissance à des fissures. En général ces fissures pénètrent dans la pièce sur une certaine profondeur, puis finissent par s'arrêter.

d. Fatigue de roulement

Un cas particulier d'endommagement par fatigue est celui de la fatigue de roulement. Ses particularités proviennent de ce que, au contact d'une roue et d'un rail, ou encore de deux dents d'engrenage, la contrainte est maximale non pas à la surface de contact mais à une certaine distance en dessous. Les divers types de fissuration par fatigue de roulement peuvent être classés en trois catégories : les fissures de surface, les fissures amorcées sous la surface et les fissures amorcées sur des défauts profonds.

Les fissures superficielles : Les fissures superficielles sont le résultat de déformations plastiques successives qui s'accumulent en surface de la bande de roulement. Ces fissures

s'amorcent en surface et se propagent selon une faible inclinaison par rapport à celle-ci. L'échauffement superficiel résultant du frottement peut être suffisamment intense pour provoquer une fissuration de fatigue thermique. Les fissures naissant à la surface sont, dans ce cas, perpendiculaires à la bande de roulement.

Les fissures sous-jacentes : Les contraintes de contact atteignent leur maximum en dessous de la surface, à une profondeur de l'ordre de 4 à 5mm. Elles sont susceptibles d'amorcer des fissures sous-jacentes qui se propagent jusqu'à une profondeur de l'ordre de 20 mm.

Fissures dues à des défauts : Les fissures amorcées sur des défauts métallurgiques s'amorcent en général à des profondeurs supérieures, de l'ordre de 10 à 30 mm sous la surface. Ces défauts peuvent être des porosités ou des inclusions. Ces fissures entraînent également des écaillages conséquents, mais elles peuvent aussi finir par se propager vers l'axe de la roue.

- 2. Notions préliminaires :
 - a. Types de variation des contraintes

Les sollicitations en fatigue peuvent être simples (traction, compression, torsion..) ou complexes (combinées). Les efforts répétés, varient en fonction du temps d'une façon périodique, dans ce cas on admet que leurs variations sont sinusoïdales.

On peut distinguer :

• Contrainte sinusoïdale à amplitude constante

C'est la variation la plus simple elle est continue et à amplitude de contrainte constante.

- Contrainte sinusoïdale à amplitude variable
- Contrainte aléatoire

La courbe de variation est d'allure quelconque

Pour simplifier les calculs en fatigue nous considérons ici que les contraintes sont sinusoïdales à amplitude constante ou à amplitude variable.

 σ_a : Amplitude de contrainte σ_m : Contrainte moyenne σ_{max} : Contrainte maximale σ_{min} : Contrainte minimale $\Delta \sigma$: Etendue de contrainte

$$\sigma_{a} = \frac{\sigma_{max} - \sigma_{mix}}{2}$$

$$\sigma_{m} = \frac{\sigma_{max} + \sigma_{mix}}{2}$$

$$\Delta \sigma = \sigma_{max} - \sigma_{mix} = 2\sigma_{a}$$

$$\sigma_{max} = \sigma_{m} + \sigma_{a}$$

$$\sigma_{max} = \sigma_{m} - \sigma_{a}$$

Par considération des signes des termes σ_{max} et σ_{min} et les termes σ_m et σ_a les sollicitations peuvent être classées comme suit :

- Sollicitation répétée : C'est le cas où les termes σ_{max} et σ_{min} sont ou bien positifs ou bien négatifs
- *Sollicitation alternée* : Dans ce cas : $\sigma_{max} / \sigma_{min} < 0$
- Sollicitation statique : C'est le cas où $\sigma_a = 0$ et $\sigma_m \neq 0$ c. Coefficient de Steefhelner

$$\phi = \frac{\sigma_{\max}}{\sigma_{\min}}$$
 avec $-1 \le \phi \le +1$

Ce coefficient est utilisé pour déterminer le type de sollicitation.

- $\phi = -1$: Contrainte complètement renversée
- $\phi = 1$: Sollicitation statique

 $-1 < \phi < 0$ ou $0 < \phi < +1$: Sollicitation répétée

- 3. Courbe de Wöhler
 - a. définition

Universellement connue, la courbe de Wöhler est la plus ancienne et la seule permettant de visualiser la tenue de la pièce ou des matériaux dans le domaine de fatigue. Elle définit une relation entre la contrainte appliquée σ_a et le nombre de cycles à rupture N.

Pour la tracer, on réalise généralement des essais simples, qui consistent à soumettre chaque éprouvette à des cycles d'efforts périodiques, d'amplitude de chargement constante fluctuant autour d'une valeur moyenne fixée, et de noter le nombre de cycles à rupture N.

Pour plus de commodité, ce nombre N est reporté en abscisse sur une échelle logarithmique, et l'amplitude de contrainte σ_a est reportée en ordonnée sur une échelle linéaire. Ainsi, à chaque éprouvette testée, correspond un point du plan (N, σ_a). A partir d'un certain nombre d'essais, nous établissons la courbe de Wöhler

• Limite de fatigue

C'est la contrainte pour laquelle aucune rupture n'est observée après un nombre de cycle infini,

• Limite d'endurance

La limite d'endurance correspond à la valeur limite vers laquelle tend l'amplitude de contrainte lorsque le nombre de cycles devient très grand. Dans le cas des aciers, cette limite d'endurance peut être réellement approchée avec 10⁷cycles.

• Durée de vie

C'est le nombre de cycles au bout duquel l'éprouvette rompt.

La courbe de Wöhler peut être divisée en 3 zones :

a) Fatigue oligocyclique (Zone I)

La contrainte σ_a est à la valeur de R_m , on observe la rupture des éprouvettes après quelques cycles (de 1 jusqu'à 10 cycles).

b) Fatigue à vie finie (Zone II)

Cette zone s'étale sur une étendue de 10 à 5.10^6 cycles correspondant à une fourchette de contraintes $R_m < \sigma_a < \sigma_D$ toutes les éprouvettes rompent après un nombre de cycles pour chacune c'est la vie finie de l'éprouvette.

c) Vie infinie (Zone III)

Au-dessous d'un seuil $\sigma_a \leq \sigma_D$ les éprouvettes ne rompent plus c'est la vie infinie, le seuil de contrainte σ_D est appelée **limite d'endurance**.

b. Modélisation de la courbe de Wöhler

Plusieurs expressions analytiques sont proposées pour représenter les courbes de Wöhler dans le domaine d'endurance limité. Ces équations permettent de calculer le nombre moyen de cycles à rupture en fonction de l'amplitude de contrainte. L'équation la plus simple et la plus utilisée

dans les codes de calcul est :
$$N = \frac{C}{\sigma_a^m}$$

C et m des coefficients qui dépendent du matériau.

Cette équation peut s'écrire :

$$LogN = LogC - m.Log\sigma_a$$

A partir du diagramme de Wöhler, nous obtenons d'autres expressions analytiques de courbes : - L'expression de BASQUIN :

$$\sigma_a = \sigma'_f(N)^b$$

Avec σ_a : Amplitude de contrainte appliquée en fatigue

 σ'_{f} : Résistance en fatigue

b : Exposant de la loi de BASQUIN

N : Nombre de cycle à rupture

Mais cette expression ne permet pas de représenter la partie asymptotique de la courbe de Wöhler. Bastenaire propose une équation qui tient compte de la limite d'endurance σ_D :

$$N = \frac{A \cdot \exp\left[-\left(\frac{\sigma_a - \sigma_D}{B}\right)^c\right]}{\sigma_a - \sigma_D}$$

Avec A, B, C constantes.

4. Limite d'endurance

a. Diagramme de Goodman et diagramme de Haigh :

La détermination de la limite d'endurance nécessite de nombreux essais et donc un investissement en temps et en argent.

Considérons un essai à un R et un σ_a donné. Tel que : $R = \frac{\sigma_{\min}}{\sigma_{\max}} = \frac{\sigma_m - \sigma_a}{\sigma_m + \sigma_a}$

$$\sigma_{\rm m} = \sigma_a \frac{1+R}{1-R}$$

donc, lorsque l'on trouve la limite d'endurance $\sigma_D(R)$ — qui est une valeur particulière de σ_a — , on peut en déduire la valeur σ_m correspondante.

La forme la plus simple est la loi linéaire de Goodman :

 $\sigma_{\rm D}(R) = \sigma_{\rm D}(R = -1) \cdot (1 - \sigma_{\rm m}/R_{\rm m})$

On trace cette courbe

- soit sur un diagramme (σ_m , σ_a), c'est le diagramme de Haigh ;
- soit sur un diagramme (σ_m , σ_{min}) et (σ_m , σ_{max}), soit [(σ_m , $\sigma_m \sigma_a$); (σ_m , $\sigma_m + \sigma_a$)]. c'est la diagramme de Goodman.

Sur ces diagrammes, on peut tracer les cas limite $\sigma_a = \sigma_D(R)$.

Ainsi, si l'on est dans un cas donné ($\sigma_m = a$; $\sigma_a = b$),

- on place le point (*a* ; *b*) dans le diagramme de Haigh ; si ce point est dans la zone de validation, alors on considère que la conception est validée, que la pièce va résister ;
- on place le segment [(a; a b); (a; a + b)] segment centré sur le point (a; a) —; si le segment est l'intérieur de la zone de validation, alors on considère que la conception est validée, que la pièce va résister.

b. Diagrammes simplifiés

Diagramme de Haigh simplifié.

Pour le diagramme de Haigh, on a une courbe limite passant par les points

- $(0; \sigma_D(R = -1))$, cas de l'essai purement alterné, et
- $(R_m; 0)$, cas de l'essai de traction simple.

On peut modéliser cette courbe limite par :

- la droite de Goodman : $\sigma_a = \sigma_D(R = -1) \times (1 \sigma_m/R_m)$;
- la droite de Soderberg, qui est un cas plus prudent, « sévérisé », où l'on se limite à la limite d'élasticité R_e : $\sigma_a = \sigma_D(R = -1) \times (1 \sigma_m/R_e)$;
- la parabole de Gerber : $\sigma_a = \sigma_D(R = -1) \times (1 (\sigma_m/R_m)^2)$;
- la méthode VDI : c'est un domaine bilinéaire, avec un segment de droite [(0 ; $\sigma_D(R = -1)$); ($R_m \sigma_D(R = -1)/2$; $\sigma_D(R = -1)/2$], et un segment de droite [($R_m \sigma_D(R = -1)/2$; $\sigma_D(R = -1)/2$); (R_m ; 0)].

Les diagrammes de Haigh et de Goodman permettent donc d'extrapoler les résultats obtenus en traction-compression alternée pure (R = -1) à tous les cas (toutes les valeurs de R).

b. Facteurs influençant la limite d'endurance expérimentale

La valeur expérimentale de la limite d'endurance σ_D obtenue dépend de l'éprouvette utilisée car celle-ci a été bien préparée du point de vue de géométrie, de dimensions, d'état de surface, absence de défauts et des conditions de l'essai. Or le cas d'une structure en service diffère complètement de celui de l'éprouvette en effet on distingue la finition, la grosseur, la température, et d'autres facteurs qui seront pris en considération.

• Température

De nombreuses études montrent que le rapport σ_D / R_m ne varie pas. Ainsi, quand la température est basse, la limite R_m augmente d'où une augmentation de la limite σ_D . Soit k_d le facteur qui tient en compte la température :

$$k_{d} = \begin{cases} \frac{344}{273 + T} & \text{si } T > 71^{\circ}\text{C} \\ 1 & \text{si } T \le 71^{\circ}\text{C} \end{cases}$$

• *Concentration de contraintes (effet d'entaille)*

Lorsque la section d'une pièce soumise à une sollicitation ne présente pas d'entaille la distribution de contraintes est régulière alors que dans la présence d'entaille provoque un déséquilibre dans la distribution des contraintes engendrant une concentration de celles-ci dans le fond de l'entaille. Pour une pièce soumise à une traction simple, la distribution des contraintes est uniforme : σ =F/S à chaque section mais au fond de l'entaille on observe une hausse de contrainte atteignant la valeur σ_{max} Le rapport $k_t=\sigma_{max}/\sigma$ est appelé coefficient théorique de concentration de contraintes.

Pour déterminer kt on utilise des abaques (courbes).

On définit le facteur de concentration de contraintes en fatigue par $K_e=1/q(k_t-1)$

q : indice de sensibilité aux effets d'entaille

Selon Peterson l'indice de sensibilité aux effets d'entaille peut s'écrire :

$$q = \frac{1}{1 + \frac{a}{r}} \qquad a = \left(\frac{270}{R_m}\right)^{1.8}$$

a : constante telle que : R_m : Résistance à la rupture (MPa) *r* : Rayon du fond de l'entaille

• Rugosité (état de surface)

Généralement le défaut s'initie depuis la surface extérieure de la pièce, plus la surface est rugueuse plus les crêtes sont importantes et plus l'effet d'entaille est intense. Pour cela il faut considérer l'état de surface de la pièce en adoptant le facteur fini de surface k_a :

$$k_a = \frac{\sigma_{Ds}}{\sigma_D}$$

 σ_{D_s} limite d'endurance de la structure

$\sigma_{\rm D}$ limite d'endurance de l'éprouvette à rugosité référence.

On utilise des abaques pour déterminer Ka, pour l'exploiter il faut se disposer des valeurs de la rugosité et la résistance Rm

• Effet de grosseur

Statistiquement plus les dimensions de la structure sont importantes plus sont probables les défauts et moins est sa résistance à la fatigue.

Pour ce fait on adopte le facteur de grosseur k_b. qui peut être déterminé par :

1 si d \leq 7.6mm

 $k_b = \begin{cases} 0.85 \text{ si } 7.6 \le d \le 50 \text{mm} \\ 0.75 \text{ si } d \ge 50 \text{mm} \end{cases}$

d : signifie la dimension caractéristique de la structure.

• Fiabilité

On entend par la fiabilité, la probabilité que la structure soit en service pour une durée de vie déterminée. On introduit donc le facteur kc.

• Fiabilité = 50% correspond à $k_c = 1$

- · Fiabilité est au voisinage de 100% pour des valeurs de kc basses (voisinage de 0.5)
- · Si Fiabilité augmente k_c diminue.

Les facteurs de fiabilité sont exprimés dans le tableau suivant.

Fiabilité	Facteur de
	_ fiabilité
0,50	1,000
0,90	0,897
0,95	0,868
0,99	0,814
0,999	0,753
0,9999	0,702
0,99999	0,659
0,999999	0,620
0,9999999	0,584
0,99999999	0,551
0,999999999	0,520

c. *Correction de la valeur de* σ_D

$$\sigma_D = k_a . k_b . k_c . k_d . k_e . k_f . \sigma_D'$$

 $\sigma_{\scriptscriptstyle D}$: Valeur de la limite d'endurance utilisée dans les calculs de structures

 σ_{D} : Valeur de la limite d'endurance déterminée expérimentalement en utilisant une éprouvette normalisée.

 k_a : Facteur de fini de surface

 k_b : Facteur de grosseur

 k_c : Facteur de fiabilité

 k_d : Facteur d'effet de température

 k_e : Facteur de concentration de contraintes

 k_f : Facteur de divers effets.

VI. Cumul des dommages :

Le dommage (ou endommagement) est un phénomène progressif qui dépend du niveau de contrainte appliquée et, du nombre d'applications à ce niveau ; d'ou le terme de cumul de dommage. Une loi de cumul de dommage est un modèle physique et mathématique permettant d'estimer la durée de vie de la pièce pour des chargements variables.

1. Loi de Miner

La règle de Miner, ou de Palmgren-Miner, pose que les dommages correspondants sont additifs, on parle de cumul linéaire. La rupture se produit donc lorsque la somme des dommages relatifs à chaque amplitude atteint l'unité.

Soit le cas le plus simple de la contrainte à amplitude variable où la contrainte est complètement renversée :

Considérons une structure soumise à un chargement à plusieurs régimes :

Régime 1 \rightarrow ($\sigma_{a1}; N_1$)

Régime 2 $\rightarrow (\sigma_{a2}; N_2)$

.

Régime n $\rightarrow (\sigma_{an}; N_n)$

Tels que les σ_{ai} sont les amplitudes et les N_i sont les nombres de cycles à la rupture correspondant à chaque σ_{ai} appliquée.

Considérons qu'en service la structure a effectué les nombres de cycles suivants :

Régime 1 $\rightarrow n_1 \ (n_1 < N_1)$ Régime 2 $\rightarrow n_2 \ (n_2 < N_2)$ Régime n $\rightarrow n_n (n_n < N_n)$

Ecrivons les rapports pour chaque régime :

Régime 1 : $\frac{n_1}{N_1}$ correspond au pourcentage d'endommagement sous le régime 1 Régime 2 : $\frac{n_2}{N_2}$ correspond au pourcentage d'endommagement sous le régime 2

Régime n : $\frac{n_n}{N}$ correspond au pourcentage d'endommagement sous le régime n

Lorsque la somme de ces n pourcentages d'endommagement est égale à 100% la structure rompt ou autrement :

$$\frac{n_1}{N_1} + \frac{n_2}{N_2} + \dots + \frac{n_n}{N_n} = 1$$
 c'est la loi de Miner ou
$$\sum_{i=1}^n \frac{n_i}{N_i} = 1$$

Les rapports $\frac{n_i}{N_i}$ sont appelés coefficients d'endommagement

Rq:

La loi de Miner est valable pour le cas de contrainte non complètement renversée seulement il faut appliquer le critère de Goodman pour les calculs nécessaires.

De ce qui précède on constate que sous un seul régime de chargement appliqué sur la structure en effectuant un cycle, un endommagement est créé plus le nombre de cycles augment plus l'endommagement augmente jusqu'à la ruine. C'est le cumul d'endommagement.

2. Lois de cumul non linéaires :

Loi modifier de Miner : a.

Les courbes d'endommagement pour chaque niveau de contrainte sont définies par

l'équation :
$$D_i = \left(\frac{n_i}{N_i}\right)^n$$

Le coefficient m est un exposant dépendant du niveau de sollicitation. Il est toujours

supérieur à 1. La rupture intervient lorsque :
$$\sum_{i=1}^{p} D_i = 1$$

P niveaux de sollicitation

b. Loi de Henry

Pour prendre en compte l'interaction des cycles sur le dommage, Henry, pose les hypothèses suivantes :

- la courbe de Wöhler d'un matériau peut être décrite par une relation de forme hyperbolique :

 $N(\sigma - \sigma_D) = C$ ou C est une constante et σ_D est la limite d'endurance du matériau ;

- les deux paramètres C et σ_D sont modifiés au fur et à mesure que le dommage par fatigue s'accumule. La résistance à la fatigue diminue et C varie de manière proportionnelle àσ_D.

- Tant que σ est inférieure à 1,5. σ_D , Henry estime que la relation est applicable.

Avec ces hypothèses, Henry montre que le dommage D, "emmagasiné" par une éprouvette, est la variation relative de la limite d'endurance.

$$D_i = \frac{\sigma_D - \sigma_{D_i}}{\sigma_D}$$

La relation peut s'écrire :

$$D_{i} = \frac{r_{i}(\lambda_{i} - 1)}{\lambda_{i} - r_{i}} \text{ avec } \lambda_{i} = \frac{\sigma}{\sigma_{D}} \text{ et } \mathbf{r}_{i} = \frac{n_{i}}{N_{i}}$$

c. Loi de Gatts

Gatts propose une relation de la forme : $\frac{m}{m} = -k.D.R$

$$\frac{a\kappa_m}{dn} =$$

Où R est une variable homogène à une contrainte, k est une constante de proportionnalité dépendante du matériau, R_m est la valeur instantanée de la résistance qui décroit et D(R) est la variable du dommage dont l'expression est donnée par :

$$D(R) = \left\langle R - \sigma_D \right\rangle^m$$

L'exposant m est propre au matériau.

VII. critères tridimensionnels d'endommagement :

Nous allons étendre le calcul aux cas complexes où le chargement est combiné c.à.d. sollicitations composées (flexion+torsion; traction+cisaillement; etc....)

1. Etat de contrainte dans le cas général

Le tenseur de contraintes de Cauchy s'écrit comme suit : $\sigma = \begin{pmatrix} \sigma_{xx} & \sigma_{yx} & \sigma_{zx} \\ \sigma_{xy} & \sigma_{yy} & \sigma_{zy} \\ \sigma_{xy} & \sigma_{xy} & \sigma_{xy} \end{pmatrix}$

$$\Sigma \text{ est symétrique donc } \sigma = \begin{pmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\ \sigma_{xy} & \sigma_{yy} & \sigma_{yz} \\ \sigma_{xz} & \sigma_{yz} & \sigma_{zz} \end{pmatrix}$$

Les contraintes σ_{xx} , σ_{yy} et σ_{zz} sont les contraintes normales.

Les contraintes σ_{xy} , σ_{yz} et σ_{xz} sont les contraintes tangentielles.

2. Contrainte équivalente de Von Misés

Dans les calculs on utilise la contrainte équivalente de Von Misés pour la comparer aux valeurs ultimes, cette contrainte s'écrit :

$$\sigma_{V} = \sqrt{\frac{1}{2}} \left[\left(\sigma_{xx} - \sigma_{yy} \right)^{2} + \left(\sigma_{yy} - \sigma_{zz} \right)^{2} + \left(\sigma_{zz} - \sigma_{xx} \right)^{2} \right] + 3 \left(\sigma_{xy}^{2} + \sigma_{yz}^{2} + \sigma_{xz}^{2} \right)^{2}$$

Ou écrite autrement :

$$\sigma_{V} = \sqrt{\frac{1}{2} \left[\left(\sigma_{x} - \sigma_{y} \right)^{2} + \left(\sigma_{y} - \sigma_{z} \right)^{2} + \left(\sigma_{z} - \sigma_{x} \right)^{2} \right] + 3 \left(\tau_{xy}^{2} + \tau_{yz}^{2} + \tau_{xz}^{2} \right)}$$

3. Application aux calculs de fatigue

Contrainte équivalente moyenne σ_{vm}

Soient les contraintes normales moyennes :

$$\sigma_{xm} = \frac{\sigma_{x\max} + \sigma_{x\min}}{2}; \ \sigma_{ym} = \frac{\sigma_{y\max} + \sigma_{y\min}}{2}; \ \sigma_{zm} = \frac{\sigma_{z\max} + \sigma_{z\min}}{2}$$

Et soient les contraintes tangentielles moyennes :

$$\tau_{xym} = \frac{\tau_{xy\max} + \tau_{xy\min}}{2}; \ \tau_{yzm} = \frac{\tau_{yz\max} + \tau_{yz\min}}{2}; \ \tau_{xzm} = \frac{\tau_{xz\max} + \tau_{xz\min}}{2}$$

La contrainte équivalente moyenne s'écrit :

$$\sigma_{Vm} = \sqrt{\frac{1}{2} \left[\left(\sigma_{xm} - \sigma_{ym} \right)^2 + \left(\sigma_{ym} - \sigma_{zm} \right)^2 + \left(\sigma_{zm} - \sigma_{xm} \right)^2 \right] + 3 \left(\tau_{xym}^2 + \tau_{yzm}^2 + \tau_{xzm}^2 \right)}$$

Contrainte équivalente amplitude σ_{va}

Les contraintes normales amplitudes s'écrivent:

$$\sigma_{xa} = \frac{\sigma_{x\max} - \sigma_{x\min}}{2}; \ \sigma_{ya} = \frac{\sigma_{y\max} - \sigma_{y\min}}{2}; \ \sigma_{za} = \frac{\sigma_{z\max} - \sigma_{z\min}}{2}$$

De même les contraintes tangentielles moyennes s'écrivent :

$$\tau_{xya} = \frac{\tau_{xy\max} - \tau_{xy\min}}{2}; \ \tau_{yza} = \frac{\tau_{yz\max} - \tau_{yz\min}}{2}; \ \tau_{xza} = \frac{\tau_{xz\max} - \tau_{xz\min}}{2}$$

La contrainte équivalente amplitude s'écrit :

$$\sigma_{Va} = \sqrt{\frac{1}{2}} \left[\left(\sigma_{xa} - \sigma_{ya} \right)^2 + \left(\sigma_{ya} - \sigma_{za} \right)^2 + \left(\sigma_{za} - \sigma_{xa} \right)^2 \right] + 3 \left(\tau_{xya}^2 + \tau_{yza}^2 + \tau_{xza}^2 \right)$$

6.4. Cas de contraintes planes

Les composantes suivantes s'annulent : $\sigma_z = \tau_{yz} = \tau_{xz} = 0$

Les contraintes équivalentes moyenne et amplitude s'écrivent:

$$\sigma_{Vm} = \sqrt{\sigma_{xm}^{2} + \sigma_{ym}^{2} - \sigma_{xm}\sigma_{ym} + 3\tau_{xym}}$$
$$\sigma_{Va} = \sqrt{\sigma_{xa}^{2} + \sigma_{ya}^{2} - \sigma_{xa}\sigma_{ya} + 3\tau_{xya}}$$

6.5. Critères de résistance

1) Contrainte complètement renversée $\sigma_{Vm}=0$

 $\sigma_{Va} \leq \sigma_D$ dans le cas de vie infinie

 $\sigma_{Va} \leq \sigma_f$ dans le cas de vie finie

 σ_D : Limite d'endurance

 $\sigma_{_f}$: Contrainte limite correspondant à une durée de vie donnée $\mathrm{N_f}$

2) Critère de Goodman

$$\frac{\sigma_{Va}}{\sigma_f} + \frac{\sigma_{Vm}}{R_m}$$
 (vie infinie)
$$F_s = \frac{1}{\frac{\sigma_{Va}}{\sigma_D} + \frac{\sigma_{Vm}}{R_m}}$$
 (vie infinie)