Centre Universitaire de Relizane	2020/2021
Idnstitut des Sciences et Technologies	1^{er} Master TD :02
Département de mathématiques	Module :Courbes et Surfaces

Exercice 1.

- 1) Montrer que pour tout $(T, N, B) \in \mathbb{R}^3 : (T \wedge N) \wedge B = \langle T, B \rangle N \langle N, B \rangle T$.
- **2)** Si (T, N, B) trièdre de Frenet alors; $B = T \wedge N$; $N = B \wedge T$ et $T = N \wedge B$.

Exercice 2. Soient $\gamma: I \to \mathbb{R}^3$ une courbe paramétrée régulière et $(\gamma(t), T(t), N(t), B(t))$ le repère de Frenet de γ en t. Si K(t) est la courbure de γ et $\tau(t)$ est la torsion de γ . Montrer que

1)
$$B(t) = \frac{\gamma'(t) \wedge \gamma''(t)}{\| \gamma'(t) \wedge \gamma''(t) \|}$$
 2) $K(t) = \frac{\| \gamma'(t) \wedge \gamma''(t) \|}{\| \gamma'(t) \|^3}$ 3) $\tau(t) = -\frac{\langle \gamma'(t) \wedge \gamma''(t), \gamma'''(t) \rangle}{\| \gamma'(t) \wedge \gamma''(t) \|^2}$

Exercice 3. 1) Déterminer la courbure et la torsion de la courbe $\gamma : \mathbb{R} \to \mathbb{R}^3$ définie par $\gamma(t) = (t, t^2, t^3)$. 2) Déterminer le plan osculateur en t = 0 et en t = 1.

Exercice 4. Soit la courbe $\gamma : \mathbb{R} \to \mathbb{R}^3$ définie par $\gamma(t) = (e^t, e^{-t}, \sqrt{2}t)$.

- 1. Montrer que γ est régulière .
- **2.** Calculer la courbure K(t) et la torsion $\tau(t)$ de γ et $\frac{K(t)}{\tau(t)}$.

Exercice 5. Calculer la courbure K(t) et la torsion $\tau(t)$ de γ dans les cas suivantes.

- 1. $\gamma: \mathbb{R} \to \mathbb{R}^3$ définie par $\gamma(t) = (3t t^3, 3t^2, 3t + t^3)$
- **2.** $\gamma : \mathbb{R} \to \mathbb{R}^3$ définie par $\gamma(t) = (\cos t, \sin t, cht)$.
- **3.** $\gamma: \mathbb{R} \to \mathbb{R}^3$ définie par $\gamma(t) = (cht, sht, t)$.

Exercice 6. Soient $\gamma: I \to \mathbb{R}^3$ une courbe paramétrée régulière et $(\gamma(t), T(t), N(t), B(t))$ le repère de Frenet de γ en t. Si K(t) est la courbure de γ et $\tau(t)$ est la torsion de γ . Montrer que : la courbe γ est plane si et seulement si $\tau(t) = 0$.