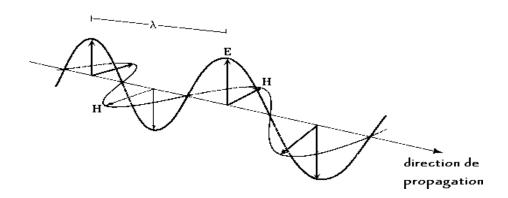
Chapitre I : Généralités sur la spectroscopie moléculaire

Définition : La spectroscopie est l'analyse du rayonnement électromagnétique émis, absorbé ou diffusé par les atomes ou les molécules. Elle fournit des informations sur l'identité, la structure et les niveaux énergétiques des atomes et des molécules du fait de l'interaction des rayonnements électromagnétiques avec la matière.

DOMAINES D'APPLICATION DE LA SPECTROSCOPIE :

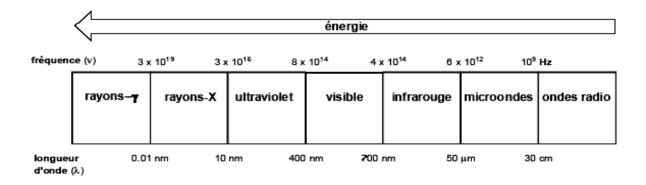

Dans les laboratoires, elle permet :

- - l'identification des molécules
- - la détermination des structures
- - l'étude des cinétiques de réaction
- - la détermination des mécanismes réactionnels
- · les dosages

INTERACTION RAYONNEMENT-MATIERE:

Rayonnement:

- Nature ondulatoire : Un rayonnement électromagnétique (ou radiation électromagnétique) est une onde constituée par deux champs oscillants : un champ électrique E et un champ magnétique H à la fois perpendiculaires entre eux et perpendiculaires à la direction de propagation.



On caractérise un rayonnement électromagnétique par sa fréquence, sa longueur d'onde ou son nombre d'onde.

fréquence (Hertz) longueur d'onde (mètre) nombre d'onde (cm⁻¹ ou m⁻¹)
$$\nu = \frac{1}{T} \qquad \qquad \lambda = cT = \frac{c}{\nu} \qquad \qquad \overline{\nu} = \frac{1}{\lambda}$$
 vitesse de la lumière période (seconde)
$$(3.10^8 \text{ m.s}^{-1})$$

L'énergie du rayonnement est reliée aux grandeurs précédentes par la relation fondamentale de Planck : E = hv; h est la constante de Planck. Elle est égale à 6,624.10⁻³⁴ J.s.

L'ensemble des radiations constitue le spectre électromagnétique.

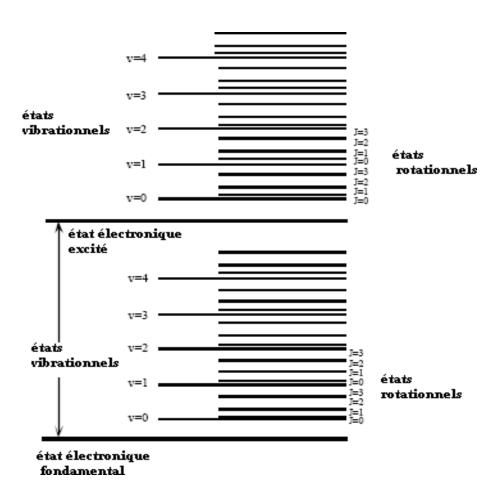
Nature corpusculaire : La nature ondulatoire de la lumière ne permet pas à elle seule d'interpréter les phénomènes d'interaction entre lumière et matière.

Planck puis Einstein proposent la théorie des quanta :

La lumière est composée de grains d'énergie : les photons.

Le photon est une particule qui se propage à la vitesse de la lumière et possède un quantum d'énergie : E = h v; h est la constante de Planck.

Niveaux d'énergie moléculaire :


Une particule élémentaire (atome, ion ou molécule) ne peut exister que dans certains états d'énergie quantifiés. Dans le cas d'une molécule, on considère que l'énergie totale est la somme des termes :

$$E = E_{\rm \acute{e}lectronique} + E_{\rm vibration} + E_{\rm rotation} + E_{\rm spin}$$

Les ordres de grandeurs sont très différents : Ee >> Ev >> Er >> Es.

Les niveaux d'énergie électronique, de vibration et de rotation sont représentés par un diagramme dans lequel chaque niveau est schématisé par un trait horizontal et caractérisé par

un ensemble de nombres quantiques n, v et J reliés respectivement aux mouvements électroniques, de vibration et de rotation de la molécule.

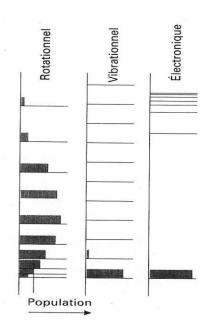
Chaque particule élémentaire (atome, ion ou molécule) possède un ensemble unique d'états énergétiques. La particule peut se retrouver dans l'un ou l'autre de ces états.

Le nombre de particules sur un niveau énergétique donné s'appelle la population. La population sur un niveau i par rapport à la population du niveau fondamental obéit à la loi de distribution de Maxwell-Boltzmann :

$$N_i / N_0 = (g_i / g_0) e^{-((E_i - E_0) / kT)}$$

Ni: nombre de particules dans l'état excité i

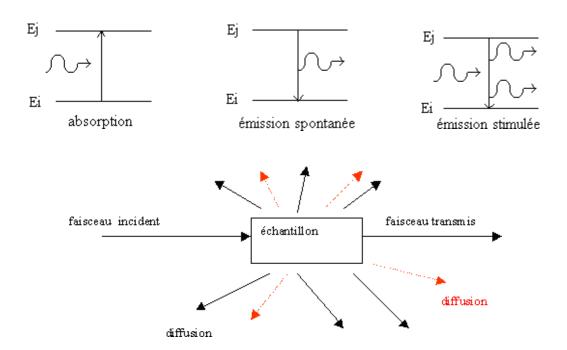
No: nombre de particules dans l'état fondamental 0


 $g_i \, \text{et} \, g_0 \colon d\acute{e}g\acute{e}n\acute{e}rescence \, des \, \acute{e}tats \, i \, \text{et} \, 0 \, respectivement$

E_i et E₀: énergie des états i et 0 respectivement k: constante de Boltzmann (1,38.10⁻²³ J.K⁻¹)

T : température en Kelvin.

En utilisant cette relation, on montre qu'à la température ordinaire :


- plusieurs niveaux de rotation sont peuplés ;
- le niveau vibrationnel fondamental est peuplé par plus de 90 % des molécules, quelques % se plaçant sur le premier niveau excité ;
- toutes les molécules sont dans l'état électronique fondamental.

Interaction entre l'onde et la matière :

Les échanges d'énergie entre matière et rayonnement ne peuvent s'effectuer que par quanta : $\Delta E = hv$.

Quatre processus sont à la base des phénomènes spectroscopiques : l'absorption, l'émission spontanée, l'émission stimulée (cas des lasers) et la diffusion.

Suite à l'échange d'énergie, le rayonnement électromagnétique entraîne une perturbation du mouvement interne moléculaire. Il se produit une transition d'un niveau d'énergie vers un autre niveau d'énergie dépendant du mouvement provoqué.

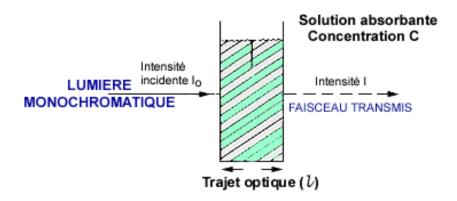
Radiation absorbée	Effet sur la matière
Ondes radio	Transitions de spins nucléaires (résonance magnétique nucléaire RMN)
Micro-onde	Rotation moléculaire. Transitions de spins électroniques (résonance paramagnétique électronique RPE)
Infrarouge	Rotation et vibration moléculaire
Visible et ultraviolet	Saut des électrons de valence
Rayons X	Extraction des électrons des couches internes de l'atome

REGLES DE SELECTION

L'interaction onde-matière étant un phénomène quantique, il s'accompagne de règles de sélection. Les règles de sélection déterminent si une transition est autorisée ou interdite.

L'interaction onde-molécule ne peut se faire que si :

- la fréquence de la lumière correspond à l'écart énergétique (ΔE) entre les niveaux concernés
- le mouvement provoque, à la même fréquence, la variation du moment dipolaire μ du système.


Si μ est le moment dipolaire électrique, alors les transitions sont de type dipolaire électrique (responsables des phénomènes observés dans l'UV, le visible et l'IR).

Si µ est le moment dipolaire magnétique, les transitions sont de type dipolaire magnétique (responsables des phénomènes de résonance magnétique nucléaire et de résonance paramagnétique électronique).

LOI D'ABSORPTION DE LA LUMIERE - LOI DE BEER-LAMBERT

Lorsque la lumière arrive sur un milieu homogène de longueur l (trajet optique), une partie de cette lumière incidente notée I0 est absorbée par le milieu et le reste, noté I, est transmis. La fraction de la lumière incidente absorbée par une substance de concentration C contenue dans une cuve de longueur l est donnée par la loi de

Beer-Lambert :
$$A = log(I_0/I) = \epsilon l C$$
.

A : absorbance autrefois appelée densité optique (D.O.)

1 : épaisseur de la cuve exprimée en centimètres

 ϵ : coefficient d'extinction. C'est une grandeur caractéristique du composé. Si la concentration est en gramme par litre, ϵ est appelé coefficient d'extinction spécifique. Si la concentration est en mole par litre, ϵ est appelé coefficient d'extinction molaire.

On définit également la transmission T comme le rapport de l'intensité transmise à l'intensité incidente : $T = I/I_0 \log (1/T) = A$

Le pourcentage de la transmission (% T) est la transmittance.

Validité de la loi de Beer-Lambert :

- Lumière monochromatique
- Faibles concentrations
- La solution ne doit être ni fluorescente, ni hétérogène (bulles, précipité...)
- La solution n'est pas le siège d'une réaction photochimique