

République Algérienne Démocratique et Populaire
Ministère de l'Enseignement Supérieur et de la Recherche Scientifique
Centre Universitaire de Relizane
Institut des Sciences et Technologies
Département d'Informatique

2ème année Informatique

Théorie des graphes Cours 5: Problème de Flot

Présenté par: Dr. Benotmane.Z

Réseau de transport

Un réseau de transport est un graphe G = (X, U, C(U)) dans lequel les conditions suivantes sont respectées :

- Il existe un sommet source S/Γ[−](S) = ∅.
- Il existe un sommet puits S/Γ⁺(S) = ∅.
- G est orienté et connexe.

Chaque arc est muni d'une valeur C(U) appelée la capacité de l'arc.

Le flot..

Un flot représente l'acheminement d'un flux de matière depuis la source Svers une destination T avec les conditions suivantes :

- Pour tout $u \in U, 0 \le f(u) \le C(U)$.
- Pour un sommet intermédiaire, la somme des flots entrants = la somme des flots sortant. $\forall x \neq S, T : \sum_{U \in \Gamma^{-}x} f(U) = \sum_{U \in \Gamma^{+}x} f(U)$.
- La somme des flots sortant de S= la somme des flots entrant à T. $\sum_{U\in\Gamma^+S}f(U)=\sum_{U\in\Gamma^-T}f(U).$

Flot maximum

Algorithme de Ford-Fulkerson

Initialement $f(U) = 0, \forall U$.

- 1. Tant qu'il existe un chemin P non saturé de S à T faire Saturer P
- Tant qu'il existe une chaîne c augmentante S à T faire Augmenter c

L'augmentation de c se fait de la manière suivante :

- Arc Direct : augmenter si f(U) < C(U)/U ∈ C⁺.
- Arc Inverse : augmenter si $f(U) > 0/U ∈ C^-$.
- augmenter par $\epsilon/\epsilon = min(C(U) f(U)/U \in C^-, f(U)/U \in C^+)$.
- ajouter ε au flots des arcs directs, et l'enlever des flots des arcs inverses.