Universite de Relizane

Master II : Electrotechnique Industrielle (2020/2021)

TP Commande des systèmes électriques

TP1: Modélisation et simulation du moteur à courant continu

La figure ci-dessous représente le schéma d'un moteur à courant continu entrainent un dise comme le montre le circuit ci-dessous

Partie I: Modélisation

- 1. Quelle est la nature du système?
- La machine étudiée est une machine à courant continu à aimants permanents. Les principales équations régissant le fonctionnement de la machine à courant continu sont :

$$u = ri + l\frac{di}{dt} + e$$

$$c = Ki$$

$$e = Kw$$

$$c - c_r = J\frac{dw}{dt} + fw$$

- u : tension de l'induit
- i : courant de l'induit
- r : résistance de 'induit
- 1 : inductance de l'induit
- e : fcem
- c : couple électromagnétique
- c_r : couple résistant
- J : inertie des parties touranantes
- f : coeficient des frottements
- w : vitesse de rotation
- K coeficient de conversion
- ✓ Hypothèse:

TP Commande des systèmes électriques Dans ce modèle nous considérerons le flux magnétique constant **Données:**

> r= 2.0 // ohms l=0.5 // Henrys Km=0.015 // constante couple Kb=0.015 // constante fem Kf=0.2 // Nms J=0.02 // kg.m^2/s^2 vapp=5 // Volt

3. Etablir le schéma Simulink qui permet de résoudre le système d'équation obtenu pour calculer:

sur un intervalle de temps $t \in [0 \cdots 5]s$

(Ecrire les équations terme par terme, les constantes doivent êtres définies dans le Workspace).

4. Transformer le schéma obtenu sous forme d'n Subsystème paramétrable

Partie II: Power system

1. <u>Principe</u>

Dans le cadre de la modélisation, la machine à courant continu prend la forme d'un masque représenté par le bloc simplifié qui suit :

Les circuits de l'induit et l'excitation (inducteur) sont visibles du bloc DC Machine (A et F). A l'entrée TL, on applique le couple de la charge, la sortie m est destinée pour la mesure et l'observation des variables d'état de la machine dans l'ordre suivant : la vitesse angulaire, le courant dans l'induit, le couple électromagnétique.

Pour configurer la machine en machine séparée ou autres il suffit de changer les schémas de connexion entre l'induit et l'inducteur.

2. <u>Matériel utilisé</u>

TP Commande des systèmes électriques

- Une machine à courant continu : <u>DC machine</u> (bibilothèque Simpower System Blockset/Machines)
- Deux sources de tension : <u>DC Voltage Source</u> (SimPower System Blockset/Electrical Sources)
- Un bloc Moment pour fournir le couple de charge (blocs <u>Gain</u> ou <u>Step</u> de la bibiothèque Simuink/ Sources)
- Un bloc oscillographe <u>Scope</u> pour visualiser les processus (de la bibiothèque Simulink/Sinks)
- Un bloc Voltage Measurements pour la mesure de tension du circuit (de la bibiothèque SimPowerSystems/ Measurements)
- Un bloc <u>Demux</u> à 4 sorties pour avoir accès aux 4 paramètres de la MCC (disponible dans la bibiothèque Simuink/ Commonly Used Blocks) et un bloc <u>Mux</u> à deux sorties.

3. <u>Démarche</u>

3.1. Simulation d'une machine à courant continu à <u>excitation séparée</u> :
 Pour faire la simulation, nous réalisons le modèle ci-dessous :

Dans les champs de réglage de la machine, on demande de régler les paramètres suivants :

- > Les paramètres de l'enroulement de l'induit : $R_a = 2.52 \Omega$, $L_a = 0.048 H$
- > Les paramètres de l'enroulement de l'excitation : $R_f = 92 \Omega$, $L_f = 5.257 H$, $L_{af} = 0.257 H$

TP Commande des systèmes électriques

- > La somme des moments d'inertie de la machine et de la charge : $J = 0.017 \text{ Kg m}^2$
- Le coefficient de frottement visqueux : B_m = 0.0000142 Nms
- > Le coefficient de frottement sec : $T_f = 0.005968$ Nm

On effectue enfin les derniers réglages sur le schéma ci-dessus en réduisant le temps de simulation de 10 à 0.5 s, en alimentant l'inducteur sous 220 V, l'induit sous 240 V et en réglant le couple résistant constant sur 10 Nm.

On peut maintenant passer à la simulation et à la visualisation des courbes suivantes.

- 3.1.1. Vitesse de rotation
 - Courbe
 - Interprétation

- 3.1.2. Couple moteur et couple résistant
 - Couple moteur :
 - Courbe
 - Interprétation
 - Couple moteur et couple résistant
 - Courbe

TP Commande des systèmes électriques

• Interprétation

3.1.3. Caractéristique électromécanique

A l'aide de la commande <u>plot</u>, on obtient la courbe de la vitesse en fonction du couple moteur. Pour cela, on utilise le bloc «To WorkSpace » pour en envoyer les résultats de simulation dans l'espace de travail de Matlab. On saisit ensuite dans l'espace de travail de Matlab la commande : plot(couple, vitesse)

• Courbe

• Interprétation