# **INFORMATION:**

Matière: Mathématiques 1/ Analyse & Algèbre 1

Crédits: 6

Coefficient: 3

#### Contenu de la matière :

# Analyse 1:

#### Théorie des ensembles.

Applications: image directe, image réciproque, injection, surjection et bijection.

Relations d'équivalences, Relations d'Ordres.

Structure de corps des nombres réels sur IR : Relation d'ordre total sur IR, valeur absolue, intervalle, ensemble borné, raisonnement par récurrence.

**Fonctions réelles d'une variable réelle**: Domaine de définition, composition des fonctions, fonctions périodiques, fonctions paires, fonction impaires, fonction bornées, sens de variations des fonctions.

Limites des fonctions : Définition de limite, limite à droite, limite à gauche, limites infinies et limite à l'infini, les formes indéterminées, opérations algébriques sur les limites, limite d'une fonction composée.

Fonctions continues: Définition de la continuité en un point, continuité à droite, continuité à gauche, prolongement par continuité, opérations algébriques sur les fonctions continues, continuité d'une fonction composée, fonction continue sur un intervalle, théorème des valeurs intermédiaires, fonctions monotones continues.

Fonctions réciproques : existence et propriétés, fonctions trigonométriques réciproques, fonctions hyperboliques.

# Chapitre 1:

#### Théorie des ensembles

#### I. <u>Définition</u>:

Un ensemble est un objet mathématique représentant une collection d'objet, appelés éléments de l'ensemble.

# II. Notation:

## II.1. Nombres entiers naturels

Un nombre entier naturel est un nombre entier qui est positif. L'ensemble des **nombres entiers** naturels est noté  $\mathbb{N}$ .

$$\mathbb{N} = \{0; 1; 2; 3; 4...\}.$$

# Exemples:

 $4 \in \mathbb{N}$ 

-2 ∉N

#### II.2. Nombres entiers relatifs

Un nombre entier relatif est un nombre entier qui est positif ou négatif. L'ensemble des **nombres** entiers relatifs est noté  $\mathbb{Z}$ .

$$\mathbb{Z} = \{...-3;-2;-1;0;1;2;3...\}.$$

#### Exemples:

 $-2 \in \mathbb{Z}$ 

 $5 \in \mathbb{Z}$ 

0,33 ∉ℤ

## II.3. Nombres décimaux

Un nombre décimal peut s'écrire avec un nombre fini de chiffres après la virgule. L'ensemble des nombres décimaux est noté  $\mathbb{D}$ .

#### Exemples:

 $0.56 \in \mathbb{D}$ 

 $3 \in \mathbb{D}$ 

 $\frac{1}{4}$  ∉ D mais  $\frac{3}{4}$  ∈ D

#### II.4. Nombres rationnels

Un nombre rationnel peut s'écrire sous la forme d'un quotient  $\frac{a}{b}$  avec a un entier et b un entier non nul. L'ensemble des **nombres rationnels** est noté  $\mathbb{Q}$ .

## Exemples:

1/3 € ℚ

 $4 \in \mathbb{Q}$ 

-4,8 € ℚ

√2 ∉ ©

#### II.5. Nombres réels

L'ensemble des **nombres réels** est noté  $\mathbb{R}$ . C'est l'ensemble de tous les nombres que nous utiliserons en classe de seconde.

# Exemples:

2, 0, -5, 0.67,1/3,  $\sqrt{3}$  ou  $\pi$  appartiennent à  $\mathbb{R}$ .

# II.6. Ensemble vide

Un ensemble qui ne contient pas de nombre s'appelle l'**ensemble vide** et se note Ø.

# II.7. Symbole d'exclusion

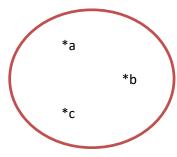
Le signe \* exclu le nombre 0 d'un ensemble. Par exemple,  $\mathbb{R}$  \* est l'ensemble des nombres réels privé de 0.

## III. Représentation d'un ensemble

a) Graphique : les éléments de l'ensemble sont placés dans une délimitée par une courbe fermé.

Exemple : cet ensemble A contient trois éléments a ,b et c

b) En extension : tous les éléments que l'ensemble fini contient, sont énumérés accolades {....}.



#### $\underline{Exemple}$ : $A = \{a,b,c\}$

c) En compréhension : l'ensemble est défini à partir des éléments d'un autre ensemble E qui satisfont une certain propriété P.

Forme générale :  $A = \{x \in E/P(x)\}.$ 

A contient tous les éléments x de E, qui vérifient la propriété P.

d) Intervalles d'un ensemble : L'ensemble de tous les nombres réels x tels que  $2 \le x \le 4$  peut se représenter sur une droite graduée.

Cet ensemble est appelé un intervalle et se note : [2;4]

Exemple:

| Nombres réels x  | Notation                       | Représentation |
|------------------|--------------------------------|----------------|
| 2 ≤ <i>x</i> ≤ 4 | [2;4]                          |                |
| -1 < x ≤ 3       | ]-1;3]                         |                |
| 0 ≤ x < 2        | [0;2[                          | <del></del>    |
| 2 < x < 4        | ]2;4[                          |                |
| <i>x</i> ≥ 2     | [ 2 ; +∞ [  ∞ désigne l'infini | 0 1            |
| x > -1           | ]-1;+∞[                        | 0 1            |
| <i>x</i> ≤ 3     | ]-∞;3]                         | 0 1            |
| x < 2            | ]-∞;2[                         | 0 1            |

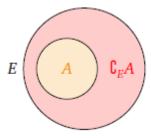
## IV. Opération sur les ensembles

a) <u>Egalité</u>: deux ensembles A et B sont égaux si et seulement si ils sont composés des mêmes éléments. En d'autre mots, si tous les éléments de A se trouvent également dans B et réciproquement. On écrit : A = B ssi  $\forall$   $x, x \in A$   $\leftrightarrow$   $x \in B$ 

<u>Exemple</u>: Si  $A = \{0,1,2,3,4,5,6,7\}; B = \{x \in N / 0 \le x \le 7\}$  alors A = B

- b) L'inclusion.  $E \subset F$  si tout élément de E est aussi un élément de F. Autrement dit :  $\forall x, x \in E$  ( $x \in F$ ). On dit alors que E est un sous-ensemble de F ou une partie de F.
- c) Ensemble des parties de E. On note P(E) l'ensemble des parties de E. Par exemple si  $E = \{1,2,3\}: P(\{1,2,3\}) = \{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$
- d) Complémentaire. Si  $A \subseteq E$ ,

$$C_E A = \{x \in E / x \notin A\}$$

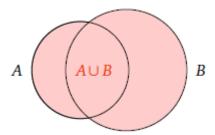


On le note aussi E/A et juste CA s'il n'y a pas d'ambiguïté (et parfois aussi  $A^c$  ou A)

e) *Union*. Pour  $A, B \subseteq E$ ,

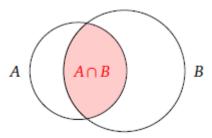
$$A \cup B = \{x \in E / x \in A \text{ ou } x \in B\}$$

Le « ou » n'est pas exclusif : x peut appartenir à A et à B en même temps.



f) Intersection.

$$A \cap B = \{x \in E / x \in Aet \ x \in B\}$$



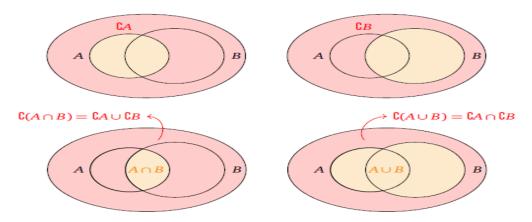
# V. Règles de calculs

Soient A, B, C des parties d'un ensemble E.

- $A \cap B = B \cup A$
- $A \cap (B \cap C) = (A \cap B) \cap C$  (on peut donc écrire  $A \cap B \cap C$  sans ambigüité)
- $A \cap \emptyset = \emptyset$ ,  $A \cap A = A$ ,  $A \subset B \leftrightarrow A \cap B = A$
- $A \cup B = B \cup A$

- $A \cup (B \cup C) = (A \cup B) \cup C$  (on peut donc écrire  $A \cup B \cup C$  sans ambiguïté)
- $A \cup \emptyset = A$ ,  $A \cup A = A$ ,  $A \_ B \leftrightarrow A \cup B = B$
- $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- C(CA)=A et donc  $A \subseteq B \leftrightarrow CB \subseteq CA$
- $C(A \cap B) = CA \cup CB$
- $C(A \cup B) = CA \cap CB$

Voici les dessins pour les deux dernières assertions



# VI. <u>Produit Cartésien :</u>

Soient E et F deux ensembles. Le *produit cartésien*, noté  $E \times F$ , est l'ensemble des couples (x, y) où  $x \in E$  et  $y \in F$ 

$$E \times F = \{ (x, y) ; x \in E \text{ et } y \in F \}$$

Si Card E = m et Card B = n alors  $Card E \times F = m.n$ 

## Exercice:

Soient  $A = \{1,2,3\}$  et  $B = \{0,1,2,3\}$ 

D'écrire les ensembles  $A \cap B$ ,  $A \cup B$ ,  $A \times B$ .

# **Solution:**

 $A \cap B = \{1,2,3\}$ ;  $A \cup B = \{0,1,2,3\}$ 

Remarque

*Comme*  $A \subseteq B$  *on*  $a A \cap B = A$  *et*  $A \cup B = B$ 

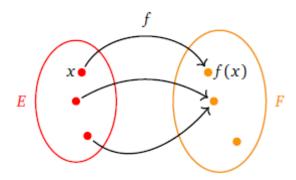
$$A \times B = \{(1,0), (1,1), (1,2), (1,3), (2,0), (2,1), (2,2), (2,3), (3,0), (3,1), (3,2), (3,3)\}$$

Remarque Card  $(A \times B) = Card(A) \times Card(B) = 3 \times 4 = 12$ 

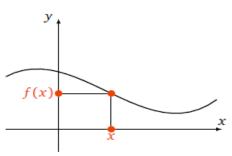
# VII. Applications

## VII.1. <u>Définition</u>:

Une application (ou une fonction)  $f: E \to F$ , c'est la donnée pour chaque élément  $x \in E$  d'un unique élément de F noté f(x). Nous représenterons les applications par deux types d'illustrations : l'ensemble de départ (et celui d'arrivée) est schématisé par un ovale ses éléments par des points. L'association  $x \to f(x)$  est représentée par une flèche.



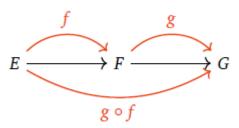
L'autre représentation est celle des fonctions continues de R dans R (ou des sous-ensembles de R). L'ensemble de départ R est représenté par l'axe des abscisses et celui d'arrivée par l'axe des ordonnées. L'association  $x \to f(x)$  est représentée par le point (x, f(x)).



Notation : l'ensemble des applications de E dans F est noté  $\mathcal{F}(E,F)$  ou  $F^E$ .

- Egalité de deux applications : on dit que deux application f et g sont égales lorsque :
- *F et g ont le même ensemble de définition E*
- Fet g ont le même ensemble d'arrivée F
- Si et seulement si pour tout  $x \in E$ , f(x) = g(x) on note alors f = g

Composée de deux applications : soit E,F et G trois ensembles, f une application de E dans
 F et g est une application de F dans G. on appelle composée de f par g et on note g ∘ f
 f: E → F et g : F→G alors g ∘ f : E → G est l'application définie par g ∘ f(x)= g(f(x))



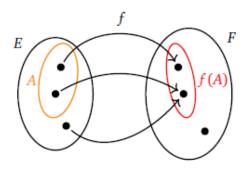
- <u>Identité</u>: soit E un ensemble. on appelle application identité de E et on note  $Id_E$ l'application de E dans E ( $E \rightarrow E$ ) définie par  $x \rightarrow x$ 
  - Pour toute application f de E dans E, on a f  $\circ$   $Id_E = f$  et  $Id_E \circ f = f$
- **Prolongements d'une application :** soit E et F deux ensembles, f une application de E dans F et G un ensemble contenant E. on appelle prolongement de f à G toute application g de G dans F telle que, pour tout x ∈ E, g(x) = f(x)

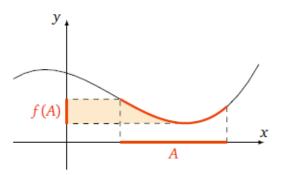
# VII.2. Image direct et image réciproque

#### 1) Image direct

Soit E et F deux ensemble, f une application de E dans F et A une partie de E. on appelle **image direct** de A par f et on note f(A) le sous-ensemble de F défini par :

$$f(A) = \{ f(x), x \in A \}$$

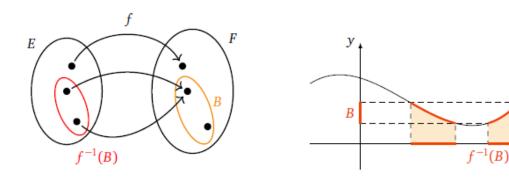




#### 2) Image réciproque

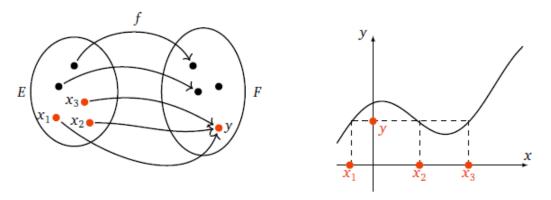
Soit E et F deux ensemble, f une application de E dans F et B une partie de F. on appelle **image réciproque** de B par f et on note  $f^{-1}(B)$  le sous-ensemble de E défini par :

$$f^{-1}(B) = \{ x \in E, f(x) \in B \}$$



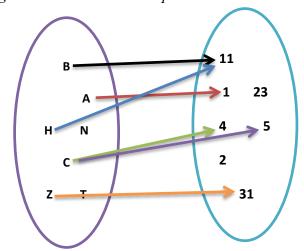
# 3) Image antécédents

Fixons  $y \in F$ , tout élément  $x \in E$  tel que f(x) = y est un **antécédent** de y, en termes d'image réciproque l'ensemble des antécédent de y est  $f^{-1}(\{y\})$ .



# Exercice:

trouvez l'image et l'antécédent de chaque élément ?



## **Solution:**

# Image d'un élément

- A, B, H, Z ont chacun une seul image
- C deux images
- D, N, T n'ont pas d'image

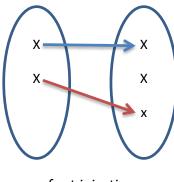
# Antécédent d'un élément

- 1, 4, 5, 31 ont chacun une seul antécédent
- 11 deux antécédent
- 23, 2 n'ont pas d'antécédent

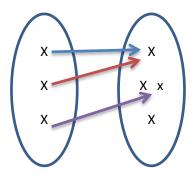
# VIII. <u>Applications injectives, surjectives et bijectives</u> VIII.1. <u>Application injective:</u>

Soit f une application de E dans F, on dit que f est **injective** lorsque tout élément de F posséde **ou plus** un antécédent par f; c.a.d:

$$\forall (x, x') \in E \times E, f(x) = f(x') \rightarrow x = x'$$



f est injective



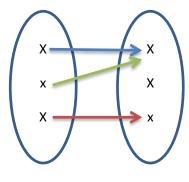
f n'est pas injective

• Composé de deux injections : la composé de deux applications injectives est injective

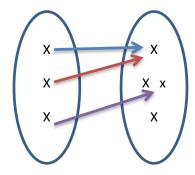
## VIII.2. Application surjective:

Soit f une application de E dans F. on dit que f est **surjective** lorsque tout élément de F possède **au moins** un antécédent par f ; c.à.d :

# $\forall y \in F, \exists x \in E, y = f(x)$



f est surjective

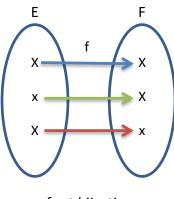


f n'est pas surjective

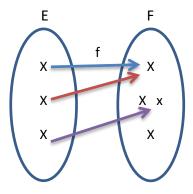
• Composé de deux surjectives : la composé de deux applications surjectives est surjective.

# VIII.3. Application bijective:

Soit f une application de E dans F. on dit que f est **bijective** lorsque f est à la fois injective et surjective. Autrement dit, f est bijective lorsque tout élément de F possède **au unique** un antécédent par f.



f est bijective



f n'est pas bijective

• Application réciproque d'une bijection : soit f une bijection de E dans F. on appelle application réciproque de f et on note  $f^{-1}$  l'application de F dans E qui, à tout élément g de g, associe son unique antécédent par g. par définition, on g:

$$\forall (x,y) \in E \times F, y = f(x) \leftrightarrow x = f^{-1}(y)$$

- Proposition: soit f une bijection de E dans F et  $f^{-1}: F \to E$  son application réciproque alors:  $f \circ f^{-1} = Id_F$  et  $f^{-1} \circ f = Id_E$
- Caractérisation de la bijection réciproque : une application f : E →F est bijection si et seulement si il existe une application g : F →E vérifiant f ∘ f<sup>-1</sup> = Id<sub>F</sub> et f<sup>-1</sup> ∘f= Id<sub>E</sub>. Dans ce cas, g est l'application de f : g = f<sup>-1</sup>

• Composé de deux bijections: soit f une application de E dans F et g une application de F dans G. si f et g sont bijectives, alors  $g \circ f$  est une bijective de E dans G et on  $a : (g \circ f)^{-1} = f^I \circ g^{-I}$ 

# Exercice:

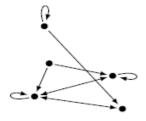
L'application  $f: R/\{-2\} \to R$  définie par  $f(x) = \frac{x-1}{x+2}$  est-elle injective, surjective ? Quelle restriction doit-on faire sur l'ensemble d'arrivée pour que f devienne une bijection ? Dans ce cas, expliciter l'application réciproque.

# IX. Relation d'équivalence

# 1. Définition:

Une **relation** sur un ensemble E, c'est la donnée pour tout couple (x, y)  $2 E \times E$  de « Vrai » (s'ils sont en relation), ou de « Faux » sinon.

Nous schématisons une relation ainsi : les éléments de E sont des points, une flèche de x vers y signifie que x est en relation avec y, c'est-à-dire que l'on associe « Vrai » au couple (x, y).



Soit E un ensemble et R une relation, c'est une relation d'équivalence si :

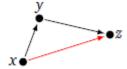
•  $\forall x \in E, x\Re x, (r\acute{e}flexivit\acute{e})$ 



•  $\forall x, y \in E, x\Re y \Rightarrow y\Re x \text{ (symétrie)}$ 



•  $\forall (x, y) \in E^2, x\Re y \text{ ou } y\Re x \Rightarrow x\Re z \text{ (transitivit\'e)}$ 

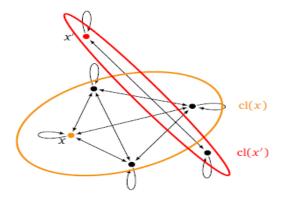


•  $\forall x, y \in E, x\Re y \land y\Re x \Rightarrow x = y (anti-symétrique)$ 

#### 2. Classes d'équivalence

Soit  $\Re$  une relation d'équivalence sur un ensemble E. Soit  $x \in E$ , la classe d'équivalence de x est

$$cl(x) = \{ y \in E / y\Re x \}$$



# <u>Remarque :</u>

- x est dit une <u>représentation</u> de la classe d'équivalence  $\dot{x}$
- On appelle ensemble quotient de E par  $\Re$  l'ensemble des classes d'équivalence tous les éléments de E il est noté  $E/_{\Re}$ .
- L'application  $E \to E_{\Re}$  est appelée « surjection canonique »  $x \mapsto \dot{x}$

# Exemple :

Dans  $\mathbb{R}$  on définit la relation  $\Re$  par :  $\forall x, y \in E, x\Re y \Rightarrow x^2 - 1 = y^2 - 1$ 

• Montrer que  $\Re$  est une relation d'équivalence et donner l'ensemble quotient  $\mathbb{R}_{\Re}$ .

#### X. Relation d'ordre:

On dit qu'une relation binaire  $\Re$  sur E est une relation d'ordre si elle est réflexive, transitive et antisymétrique.

#### Remarque:

- L'ordre est dit **total** s'il permet de comparer deux élément quelconques  $\forall (x, y) \in E^2$ ,  $x\Re y$  ou  $y\Re x$
- L'ordre est dit **partiel** dans le cas contraire

#### **Exemple**:

Soit  $\Re$  la relation défini sur  $\mathbb{N}^*$  par la relation « x divisé y »vérifions qu'elle est antisymétrique

$$x\Re y \Longrightarrow \exists k \in \mathbb{N}^*, y = kx$$
$$y\Re x \Longrightarrow \exists k' \in \mathbb{N}^*, x = k'y$$

Comme  $k,k' \in \mathbb{N}^*$ , alors k = k' = 1 c.à.d x = y

# <u>Partie 2 :</u> <u>Structure de corps des nombres réels sur R</u>

# 1. Corps des nombres réels :

Il existe un ensemble, appelé corps des nombres réels et noté  $\mathbb R$ , muni de 2 lois (opérations) internes + et  $\times$ 

"+":
$$\mathbb{R} \to \mathbb{R}$$
 "×": $\mathbb{R} \to \mathbb{R}$  (x, y)  $\mapsto$  x + y (x, y)  $\mapsto$  x × y

## 1.1. Addition

L'addition des réels possèdes les propriétés suivantes :

- <u>Commutativité</u>: pour tous réels x et y; x + y = y + x.
- Associativité: pour tous réels x,y et z: (x+y)+z=x+(y+z)
- <u>0 est élément neutre</u>: pour tout réel x: x+0=0+x
- <u>Tout réel a un opposé</u>: x + (-x) = (-x) + x = 0

*En disant que* ( $\mathbb{R}$ ,+) *est* un groupe commutatif.

#### 1.2. Multiplication

La multiplication des réels possèdes les propriétés suivantes :

- Commutativité: pour tous réels x et y;  $x \times y = y \times x$ .
- Associativité: pour tous réels x, y et z:  $(x \times y) \times z = x \times (y \times z)$
- <u>1 est élément neutre</u>: pour tout réel x:  $x \times 1 = 1 \times x = x$
- <u>Tout réel a un inverse</u>:  $x \times \frac{1}{x} = \frac{1}{x} \times x = 1$

*En disant que* ( $\mathbb{R}$ ,+,×) *est* un groupe commutatif.

#### 1.3. Relation d'ordre :

La comparaison des réels possède les propriétés suivantes :

- *Réflexivité* : pour tout réel  $x : x \le x$
- Antisymétrie: pour tout réel x et  $y:(x \le y \text{ et } y \le x) \Rightarrow x = y$
- Transitivité: pour tout réel x, y et z:  $(x \le y \text{ et } y \le z) \Rightarrow x \le z$

On dit que  $\leq$  est une relation d'ordre

• On  $a \ \forall x, y \in \mathbb{R}, x \le y \text{ ou } y \le x \Rightarrow y \le x : \text{ on dit que l'ordre est totale}$ 

De plus l'ordre est compatible avec :

- *L'addition*:  $\forall x, y, z \in \mathbb{R}^3, x \le y \Rightarrow x+z \le y+z$
- La multiplication par les réels positifs :  $\forall (x, y) \in \mathbb{R}^2, \forall z \in \mathbb{R}_+ : x \le y \implies xz \le yz$

En disant que  $(\mathbb{R},+,\times,\leq)$  est un corps commutatif totalement ordonné

# 2. La propriété de la borne supérieure :

#### a. Majorant et minorant :

*Soit A une partie de*  $\mathbb{R}$  :

- Un réel M est un majorant de A lorsque :  $\forall x \in A, x \leq M$ .
- Un réel  $m \in R$  est un minorant de A lorsque :  $\forall x \in A$ ,  $m \leqslant x$ .
- A est une partie majorée lorsqu'il existe un majorant de A.
- A est une partie minorée lorsqu'il existe un minorant de A.
- A est une partie bornée lorsqu'elle est à la fois majorée et minorée.

#### b. Plus grand et plus petit élément

Soit A une partie de E.

- A possède un plus grand élément s'il existe un élément de A qui est aussi un majorant de A.
- Un tel élément est nécessairement unique et est appelé le plus grand élément de A. On le note max(A).
- A possède un plus petit élément s'il existe un élément de A qui est aussi un minorant de A. Un tel élément est nécessairement unique et est appelé le plus petit élément de A. On le note min(A).

# c. Borne supérieure et inférieure :

Soit A une partie de R.

- On dit que A admet une borne supérieure lorsque l'ensemble des majorants de A possède un plus petit élément. Dans ce cas on appelle borne supérieure de A, qu'on note sup(A), le plus petit élément de l'ensemble des majorants de A.
- On dit que A admet une borne inférieure lorsque l'ensemble des minorants de A possède un plus grand élément. Dans ce cas on appelle borne inférieure de A, qu'on note inf(A), le plus grand élément de l'ensemble des minorants de A.

#### Exemple:

*Trouver min, max, inf et sup des partie de*  $\mathbb{R}$  *suivantes :* 

$$A_{1} = [0,1], A_{2} = [0.2[, A_{3} = ]0,1[, A_{4} = [1,+\infty[, A_{5} = ]-\infty,+\infty[, A_{6} = \left\{\frac{1}{n}-1, n \in \mathbb{N}^{*}\right\}]$$

# 3. Valeur absolue:

**<u>Définition</u>**: Étant donné un réel x, on appelle valeur absolue de x, qu'on note |x|, le réel positif

défini par :

$$\begin{vmatrix} x \end{vmatrix} = \begin{cases} x & \text{si } x \ge 0 \\ -x & \text{si } x < 0 \end{cases}$$

#### **Proposition:**

- $\forall x \in \mathbb{R}, |x| = 0 \Rightarrow x = 0$
- $\forall (x, y) \in \mathbb{R}^2, |x \times y| = |x| \times |y|$
- $\forall (x, y) \in \mathbb{R}^2, |x + y| \le |x| + |y|$  (Première inégalité triangulaire)
- $\forall (x, y) \in \mathbb{R}^2, ||x| |y|| \le |x y| \le |x| + |y|$  (Second inégalité triangulaire)
- $\forall (x, y) \in \mathbb{R}^2, \left| \frac{x}{y} \right| = \frac{|x|}{|y|}, (y \neq 0)$
- $\bullet \quad \forall x \in \mathbb{R}, \sqrt{x^2} = |x|$

**<u>Devoir à la maison :</u>** montrer les propriétés (2) et (3)

# 4. Intervalles de $\mathbb{R}$ :

Une partie I de  $\mathbb{R}$  est un intervalle si des qu'elle contient deux réels, elle contient tous les réels intermédiaire :  $\forall (c,d) \in I^2, \forall x \in \mathbb{R}, (c \le x \le d \Rightarrow x \in I)$ 

On peut avoir:

• 
$$I = \{x \in \mathbb{R}, a \le x \le b\} = [a, b]$$
 Intervalle fermé borné ou segment

• 
$$I = \{x \in \mathbb{R}, a \le x \prec b\} = [a,b]$$
 Intervalle borné semi-ouvert à droite

• 
$$I = \{x \in \mathbb{R}, a \prec x \leq b\} = [a, b]$$
 Intervalle borné semi-ouvert à gauche

• 
$$I = \{x \in \mathbb{R}, a < x < b\} = [a,b]$$
 Intervalle borné ouvert

• 
$$I = \{x \in \mathbb{R}, x \ge a\} = [a, +\infty]$$
 Intervalle fermé non majoré

• 
$$I = \{x \in \mathbb{R}, x \succ a\} = [a, +\infty[$$
 Intervalle ouvert non majoré

• 
$$I = \{x \in \mathbb{R}, x \le b\} = ]-\infty, b]$$
 Intervalle fermé non minoré

• 
$$I = \{x \in \mathbb{R}, x < b\} = ] -\infty, b[$$
 Intervalle ouvert non minoré

• 
$$I = \mathbb{R} = ]-\infty, +\infty[$$
 Intervalle ni minoré ni majoré

<u>Théorème</u> (densité des rationnels): tout intervalle non vide et non réduit à un singleton contient au moins un rationnel, c.à.d  $\forall (a,b) \in \mathbb{R}^2, (a < b), \exists r \in /a \prec r \prec b$ 

# 5. Principe de récurrence :

Soit P(n) une propriété dépendant de  $n \in \mathbb{N}$ , et  $n_0 \in \mathbb{N}$  on suppose que :

- La propriétés  $P(n_0)$  est vraie;
- Pour tout entier  $n \ge n_0$ , P(n) implique P(n+1).

Alors, la propriété P(n) est vraie pour tout entier  $n \ge n_0$ 

#### 6. Principe de récurrence forte (ou récurrence avec prédécesseurs):

Soit P(n) une propriété dépendant de  $n \in \mathbb{N}$ , et  $n_0 \in \mathbb{N}$  .on suppose que :

- La propriétés  $P(n_0)$  est vraie;
- Pour tout entier  $n \ge n_0$ ,  $(P(n_0) \text{ et } P(n_0+1) \text{ et } P(n))$  implique P(n+1)

Alors, la propriété P(n) est vraie pour tout entier  $n \ge n_0$ 

# Partie 3:

# Fonctions réelles d'une variable

### 1. Domaine de définition :

On appelle fonction réelle d'une variable réelle, toute application f définie sur une partie D de  $\mathbb{R}$  à valeur dans  $\mathbb{R}$ . D est appelé domaine de définition de f et est noté  $D_f$ .

$$D_f = \{x \in \mathbb{R} : f(x) \text{ existe } \}$$

Exemples: 
$$f(x) = \frac{1}{x}, D_f = \left\{ x \in \mathbb{R}, x \neq 0 \right\} = \mathbb{R}^*$$
$$g(x) = \sqrt{x}, D_g = \left\{ x \in \mathbb{R}, x \geq 0 \right\} = \left[ a, +\infty \right[$$

# 2. Définition (Graphe d'une fonction) :

Dans un plan rapporté à un repère (o; i, j) (généralement orthonormé). Les points M(x; f(x)) avec  $x \in D_f$  constituent la courbe représentative de f, noté  $C_f$ .

$$C_f = \{M(x; f(x)) : x \in D_f\}$$

On appelle graphe de f, l'ensemble des couples (x; f(x)) où  $x \in D_f$ 

# 3. Composition des fonctions :

*Trois cas génériques : Soient P(x) et Q(x) deux fonctions* 

ler cas: fonction du type 
$$f(x) = \frac{P}{Q}$$
 f est définie pour tout  $Q \neq 0$ 

**2éme cas :** fonction du type 
$$f(x) = \sqrt{Q}$$
 f est définie pour tout  $Q \ge 0$ 

3éme cas: fonction du type 
$$f(x) = \frac{P}{\sqrt{Q}}$$
 f est définie pour tout  $Q > 0$ 

#### 4. Fonctions périodiques :

*La fonctions est dite paire lorsque* :  $\exists p \in \mathbb{R}^* : f(x+T) = f(x), \forall x \in D_f$ 

(La plus petite valeur positive de p est appelée la période f)

Pour tout 
$$x \in \mathbb{R}$$
 et tout  $k \in \mathbb{Z}$  on  $a : \cos(x+2k\pi) = \cos x$ 

 $T = 2\pi$  est la période de la fonction cos(x) définie sur  $\mathbb{R}$ 

#### Remarque:

Si f est de période T alors  $\forall x \in N : (x + nT) \in Df$ ; f(x + nT) = f(x)

#### 5. Fonctions paires:

*La fonctions est dite paire lorsque* :  $\forall x \in D_f$  : f(-x) = f(x)

$$f(x) = \cos x$$
 est paire car on a  $f(-x) = \cos(-x) = \cos x = f(x)$ 

#### 6. Fonctions impaires:

*la fonction f est impaire Si* :  $\forall x \in D_f$ , f(-x) = -f(x)

 $g(x) = \sin x$  est impaire car on  $a : \sin(-x) = \sin x$ 

#### 7. Fonctions bornées:

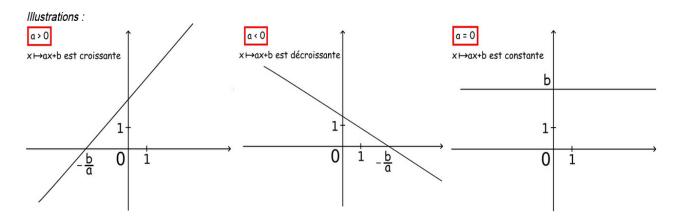
*La fonction est dite bornée si* :  $\exists a, A \in \mathbb{R} : a \le f(x) \le A \forall x \in D_f$ 

*Comme* :  $-1 \le \cos x \le 1$  *alors la fonctions*  $\cos(x)$  *est bornée.* 

#### 8. Sens de variation des fonctions :

Soit f la définie par f(x) = ax + b.

- •\* Si a>0, alors f est croissante sur  $\mathbb{R}$ .
- Si a < 0, alors f est décroissante sur  $\mathbb{R}$ .
- Si a=0, alors f est constante sur  $\mathbb{R}$ .



#### On générale :

La fonction f définie sur D est dite :

- Croissante si:  $\forall (x, x') \in D^2, (x \le x' \Longrightarrow f(x) \le f(x'))$
- Décroissante si :  $\forall (x, x') \in D^2, (x \le x' \Longrightarrow f(x) \ge f(x'))$
- Strictement croissante si:  $\forall (x, x') \in D^2, (x < x' \Rightarrow f(x) < f(x'))$
- Strictement décroissante si:  $\forall (x, x') \in D^2, (x < x' \Rightarrow f(x) > f(x'))$
- Monotone si : elle est croissante ou décroissante
- Strictement monotone si : elle est strictement croissante ou strictement décroissante
- *Majorée si* :  $\exists M \in \mathbb{R}, \forall x \in D, f(x) \leq M$
- *Minorée si* :  $\exists m \in \mathbb{R}, \forall x \in D, f(x) \geq m$ .

# 9. Opération sur les fonctions :

Soit f, g deux fonctions définies sur D:

- *Une addition*:  $\forall x \in D : (f+g)(x) = f(x) + g(x)$
- *Une multiplication* :  $\forall x \in D : (f.g)(x) = f(x).g(x)$
- Une multiplication externe par réels :  $\forall x \in D : (\alpha.f)(x) = \alpha.f(x)$
- *Une relation d'ordre*:  $f \le g \Leftrightarrow \forall x \in D; f(x) \le g(x)$

# Partie 4:

# Limites des fonctions

## 1. Limites:

Soit f une fonction y = f(x) définie sur un intervalle I contenant le point  $x_0$ . On dit que f admet pour limite en ce point  $x_0$  le nombre réel L ssi :

$$\forall \varepsilon > 0, \forall n > 0 \text{ tels que } \forall x \in I : 0 < |x - x0| < n \rightarrow |f(x) - l| < \varepsilon$$

On note: 
$$\lim_{x\to x0} f(x) = l$$

**Remarque**: Si une fonction a une limite, cette limite est unique.

# 2. Limite à droite, limite à gauche :

• On dit que f admet une limite à droite en  $x_0$  si la restriction de f à  $]x_0, +\infty[\cap I]$  admet une limites en  $x_0$ 

Notation: 
$$\lim_{x \to x_0^+} f(x)$$
 ou  $\lim_{x \to x_0} f(x)$ 

• On dit que f admet une limite à gauche en  $x_0$  si la restriction de f à  $]-\infty, x_0[\cap I]$  admet une limites en  $x_0$ 

Notation: 
$$\lim_{x \to x_0^-} f(x)$$
 ou  $\lim_{x \to x_0^-} f(x)$ 

$$\underline{Exemple: \lim_{x \to 0} \frac{|x|}{x}} = \begin{cases} \lim_{x \to 0^{-}} \frac{-x}{x} = -1\\ \lim_{x \to 0^{+}} \frac{x}{x} = 1 \end{cases}$$

#### 3. Limite infinies et limite à l'infini :

# a. En plus l'infini:

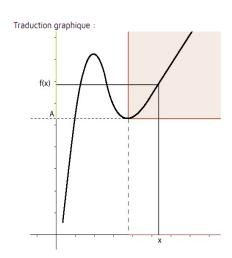
« f(x) tend vers  $+\infty$  lorsque x tend vers  $+\infty$  » ou « f a pour limite  $+\infty$  en  $+\infty$  » signifie que tout intervalle ]A;  $+\infty[$ , avec A>0, contient toutes les valeurs de f(x) pour x assez grand.

$$\lim_{x\to\infty} f(x) = +\infty$$

#### b. En moin l'infini :

« f(x) tend  $vers - \infty$  lorsque x tend  $vers + \infty$  » ou « f a pour limite  $-\infty$  en  $+\infty$  » signifie que tout intervalle  $]-\infty$ ; B[, avec B>0, contient toutes les valeurs de f(x) pour x assez grand.

$$\lim_{x \to -\infty} f(x) = -\infty$$



# c. Limites des fonctions élémentaires c.1. Limites en l'infini

| f(x)                        | $\chi^n$                                      | $\frac{1}{x^n}$ | $\sqrt{x}$ | $\frac{1}{\sqrt{x}}$ |
|-----------------------------|-----------------------------------------------|-----------------|------------|----------------------|
| $\lim_{x \to +\infty} f(x)$ | +∞                                            | 0               | $+\infty$  | 0                    |
| $\lim_{x \to -\infty} f(x)$ | $+\infty$ si $n$ pair $-\infty$ si $n$ impair | 0               | non défini | non défini           |

## c.2. Limites en 0

| f(x)                                      | $\frac{1}{x^n}$                               | $\frac{1}{\sqrt{x}}$ |
|-------------------------------------------|-----------------------------------------------|----------------------|
| $\lim_{\substack{x \to 0 \\ x > 0}} f(x)$ | $+\infty$                                     | $+\infty$            |
| $\lim_{\substack{x \to 0 \\ x < 0}} f(x)$ | $+\infty$ si $n$ pair $-\infty$ si $n$ impair | non défini           |

## 4. Les formes indéterminées :

$$\frac{0}{0}, \frac{\infty}{\infty}, (+\infty - \infty), 0 \times \infty$$

Il existe des formes indéterminées tel que :  $\frac{0}{0}$ ,  $\frac{\infty}{\infty}$ ,  $(+\infty - \infty)$ ,  $0 \times \infty$ 

## 5. Operations algébrique sur les limites :

# 5.1. Somme de fonctions :

| Si $f$ a pour limite        | $\ell$         | $\ell$    | $\ell$    | $+\infty$ | $-\infty$ | $+\infty$ |
|-----------------------------|----------------|-----------|-----------|-----------|-----------|-----------|
| Si g a pour limite          | $\ell'$        | $+\infty$ | $-\infty$ | $+\infty$ | $-\infty$ | $-\infty$ |
| alors $f + g$ a pour limite | $\ell + \ell'$ | $+\infty$ | $-\infty$ | $+\infty$ | $-\infty$ | F. Ind.   |

# <u>Exemple</u>

- 1. Limite en  $+\infty$  de la fonction f définie sur  $\mathbb{R}^*$  par :  $f(x) = x + 3 + \frac{1}{x}$
- 2. Limite en  $+\infty$  et  $-\infty$  de la fonction f définie sur  $\mathbb{R}$  par :  $f(x) = x^2 + x$

## 5.2. Produit de fonctions :

| Si $f$ a pour limite             | $\ell$              | $\ell \neq 0$ | 0        | $\infty$   |
|----------------------------------|---------------------|---------------|----------|------------|
| Si g a pour limite               | $\ell'$             | $\infty$      | $\infty$ | $\infty$   |
| alors $f \times g$ a pour limite | $\ell \times \ell'$ | ∞*            | F. ind.  | $\infty^*$ |

<sup>\*</sup>Appliquer la règle des signes

# Exemple:

1. Limite en  $-\infty$  de la fonction précédente :  $f(x) = x^2 + x$ 

2. Limite en  $+\infty$  de la fonction définie sur  $\mathbf{R}$ + par :  $f(x) = x - \sqrt{x}$ 

# 5.3. Quotient de fonctions :

| Si $f$ a pour limite              | $\ell$              | $\ell \neq 0$ | 0       | $\ell$ | $\infty$    | $\infty$ |
|-----------------------------------|---------------------|---------------|---------|--------|-------------|----------|
| Si g a pour limite                | $\ell' \neq 0$      | 0 (1)         | 0       | 8      | $\ell'$ (1) | 8        |
| alors $\frac{f}{g}$ a pour limite | $rac{\ell}{\ell'}$ | ∞*            | F. ind. | 0      | ∞*          | F. ind.  |

<sup>\*</sup>Appliquer la règle des signes

(1) doit avoir un signe constant

## Exemple:

1. Limite en -2 de la fonction définie sur  $\mathbf{R} - \{-2\}$  par :  $f(x) = \frac{2x-1}{x+2}$ 

6. Limite d'une fonction composée :

<u>Théorème</u>: soit deux fonctions, f,g. Soient a,b et c des reéls ou  $+\infty$  ou  $-\infty$  si:

$$\lim_{x \to a} f(x) = b \quad et \quad \lim_{x \to b} g(x) = c \quad alors \quad \lim_{x \to a} g[f(x)] = c$$

#### Exemple:

1. 
$$\lim_{x \to +\infty} h(x) \text{ avec } h(x) = \sqrt{2 + \frac{1}{x^2}}$$

2. 
$$\lim_{x \to +\infty} k(x) \ avec \ k(x) = \cos(\frac{1}{x^2 + 1})$$

# Partie 4:

# Fonctions continues

# 1. Définition de la continuité en un point :

Soit  $f:I \rightarrow R$  une fonction et  $a \in I$ .

• On dit que f est continue en a si f admet pour limite f(a) en a:

$$\forall \varepsilon > 0, \forall n > 0 \text{ tels que } \forall x \in I: |x - a| < n \rightarrow |f(x) - f(a)| < \varepsilon$$

# 2. Continuité à droite, continuité à gauche :

- f est continue à droite en  $x_0 \in I$ ,  $lorsque : \lim_{x \to x_0} f(x) = f(x_0)$
- f est continue à gauche en  $x_0 \in I$ , lorsque:  $\lim_{x \xrightarrow{<} x_0} f(x) = f(x_0)$
- f est continue en  $x_0 \in I$ ,  $lorsque: \lim_{x \to \infty} f(x) = \lim_{x \to \infty} f(x) = f(x_0)$

#### 3. Prolongement par continuité :

Soient  $f: I \to \mathbb{R}$ , une fonction définie sur I, peut être en  $x_0$   $f: I \to \mathbb{R}$  et l un nombre réel supposons que :  $\lim_{\substack{x \to x_0 \\ x \neq I_0}} f(x) = l$  et définissons la fonction  $\tilde{f}: I \cup \{x_0\} \to \mathbb{R}$  en posant

$$\tilde{f}(x) = \begin{cases} f(x) & \text{si } x \in I(x \neq x_0) \\ l & \text{si } x = x_0 \end{cases} \text{ ainsi la fonction } \tilde{f} \text{ est continue en } x_0$$

• La fonction  $\tilde{f}$  s'appelle le prolongement par continuité de f en  $x_0$ .

# 4. Opérations algébriques sur les fonctions continues :

Soient f et g des fonctions de I dans  $\mathbb{R}$  supposons que f et g sont continue en  $x_0 \in I$ .

- Les fonctions f + g,  $f \cdot g$  et  $\lambda f$  pour tout  $\lambda \in \mathbb{R}$ , sont continuités en  $x_0$ .
- Si  $g(x_0) \neq 0$  alors la fonctions  $\frac{f}{g}$  est continue en  $x_0$ .

#### 5. Continuité d'une fonction composée :

$$x \xrightarrow{g} g(x) \xrightarrow{f} f(g(x))$$

- Si g est continue en  $x_0$  et si f est continue en g ( $x_0$ ) alors  $f \circ g$  est continue en  $x_0$ Continuité sur un intervalle
- Si g est continue sur l et si f est continue sur g(l) alors  $f \circ g$  est continue sur l

## 6. Fonction continue sur un intervalle :

Soient I un intervalle et  $f: I \to \mathbb{R}$ , une fonction. Si f est continue, alors f(I) est un intervalle Théorème: soient I un intervalle et  $f: I \to \mathbb{R}$ , une fonction continue et strictement et strictement monotone, alors la bijection réciproque  $f^I$  de f est continue, strictement monotone et de même sens de variation que f.

#### 7. Théorème des valeurs intermédiaires :

Soit  $f:[a,b] \to R$  une fonction continue. Soit  $\gamma \in R$  tel que  $\gamma$  est compris entre f(a) et f(b) ( $f(a) < \gamma < f(b)$ ). Alors il existe  $c \in [a,b]$  tel que :  $f(c) = \gamma$ .

# 8. Fonctions monotones continues:

- On dit que f est monotone sur I si son sens de variation ne change pas sur I. Autrement dit si elle est croissante sur tout I ou décroissante sur tout I.
- f est dite strictement monotone sur I si elle est strictement croissante sur tout I, ou strictement décroissante sur tout I.

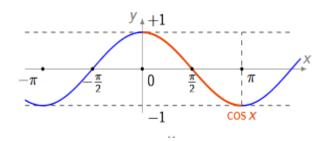
# <u>Partie 5 :</u> Fonctions réciproques

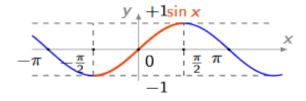
: existence et propriétés, fonctions trigonométriques réciproques, fonctions hyperboliques.

# 1. Définition:

Les fonctions sinus, cosinus définies de r dans l'intervalle [-1;1] sont des applications surjectives par définition, c'est à dire :

 $\forall y \in [-1, 1], \exists x \in \mathbb{R}, \text{ tel que } \sin(x) = y \text{ et } \cos(x) = y.$ 

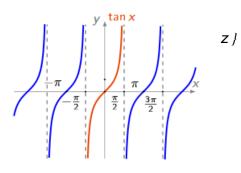




La fonction tangente définie de  $\mathbb{R}$  { $x \in \mathbb{R}$  / $x = 2\pi + k\pi$ ,  $k \in$  dans  $\mathbb{R}$  est une application surjective par définition.

# 2. Fonctions trigonométriques réciproques :

• Pour la fonction sinus, on restreint son domaine de définition à l'intervalle  $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$  et on a :



$$\sin : \left[ -\frac{\pi}{2}, \frac{\pi}{2} \right] \to \left[ -1, 1 \right]$$

$$x \mapsto \sin x$$

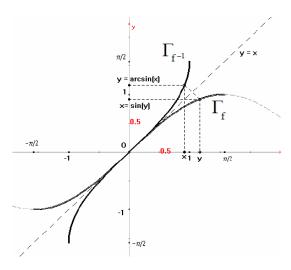
Alors cette fonction " sin " est bijective et on peut définir sa fonction réciproque appelée arc sinus ainsi :

$$arc \sin : [-1,1] \rightarrow \left[ -\frac{\pi}{2}, \frac{\pi}{2} \right]$$

 $x \mapsto arc\sin x$ 

avec l'équivalence :  $y = arcsin(x) \Leftrightarrow x = sin(y)$ 

La représentation graphique  $\Gamma_{f^{-1}}$  d'une fonction  $f^{-1}$ , réciproque d'une application f bijective est toujours symétrique de  $\Gamma_f$  par rapport à la bissectrice d du premier et troisième quadrant d'équation d: y = x



 Pour la fonction cosinus, on restreint son domaine de définition à l'intervalle [0; π] et on a:

$$\cos: [0, \pi] \to [-1, 1]$$

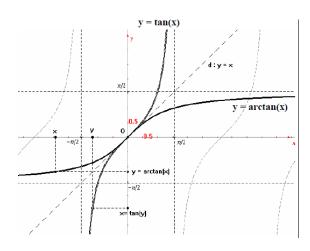
$$x \mapsto \cos x$$

Alors cette fonction "cos" est bijective et on peut définir sa fonction réciproque appelée arc cosinus ainsi :

$$\arccos:[-1,1] \rightarrow [0,\pi]$$

$$x \mapsto arc\cos x$$

avec l'équivalence :  $y = arccos(x) \Leftrightarrow x = cos(y)$ 



• Pour la fonction tangente, on restreint son domaine de

définition à l'intervalle  $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$  et on a :

$$\tan x : \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[ \to \mathbb{R}$$

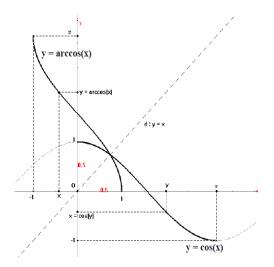
$$x \mapsto \tan x$$

Alors cette fonction "tan" est bijective et on peut définir sa fonction réciproque appelée arc tangente ainsi :

$$arc \tan x : \mathbb{R} \to \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$$

$$x \mapsto arct an x$$

avec l'équivalence :  $y = arctan(x) \Leftrightarrow x = tan(y)$ 



# 3. Fonctions hyperboliques directes:

# a. Sinus hyperbolique et cosinus hyperbolique :

On appelle fonction sinus hyperbolique la fonction:

$$shx: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto shx = \frac{e^x - e^{-x}}{2}$$

On appelle fonction cosinus hyperbolique la fonction :

$$chx: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto chx = \frac{e^x + e^{-x}}{2}$$

#### Remarques:

• La fonction sh est impaire.

En effet, elle est définie sur R et, pour tout  $x \in \mathbb{R}$ , on  $a: sh(-x) = \frac{e^{-x} - e^{-(-x)}}{2} = \frac{-e^{-x} + e^{x}}{2} = -shx$ 

• La fonction ch est paire.

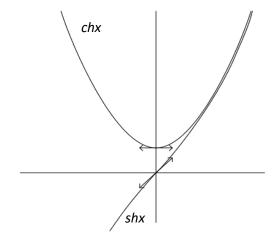
En effet, elle est définie sur R et, pour tout  $x \in \mathbb{R}$ ,

on a: 
$$ch(-x) = \frac{e^{-x} + e^{-(-x)}}{2} = \frac{e^{-x} + e^{x}}{2} = chx$$

Le graphe de la fonction ch admet donc l'axe des ordonnées pour axe de symétrie.

- Pour tout  $x \in \mathbb{R}$ , on a  $ch^2 x - sh^2 x = 1$ . Proposition:

- La fonction sh est dérivable sur R et sa dérivée est ch.
- La fonction ch est dérivable sur R et sa dérivée est sh.



# b. Tangente hyperbolique:

On appelle fonction tangente hyperbolique la fonction:

$$thx: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto hx = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

#### Remarques:

• La fonction sh est impaire.

En effet, elle est définie sur R et, pour tout  $x \in \mathbb{R}$ , on a :  $th(-x) = \frac{sh(-x)}{ch(-x)} = \frac{-sh(x)}{ch(x)} = -thx$ 

• Pour tout 
$$x \in \mathbb{R}$$
, on  $a: 1-th^2(x) = \frac{1}{ch^2(x)}$ 

# 4. Fonctions hyperboliques réciproques :

- 1. Réciproque de la fonction sinus hyperbolique :
  - La fonction **sh** est continue et strictement croissante sur R, elle réalise donc une bijection de cet intervalle sur son image R et on peut définir son application réciproque.
  - ho On appelle fonction argument sinus hyperbolique, et on note :  $Argsh: \mathbb{R} \to \mathbb{R}$  $x \mapsto Argshx$

L'application réciproque de la fonction sinus hyperbolique.

- La fonction **Argsh** est dérivable sur R et Pour tout  $x \in \mathbb{R}$ ,  $Argsh'(x) = \frac{1}{\sqrt{1+x^2}}$
- 2. Réciproque de la fonction cosinus hyperbolique :
- ➤ La fonction ch est continue et strictement croissante sur  $[0,+\infty[$ , elle réalise donc une bijection de cet intervalle sur son image  $[1,+\infty[$  et on peut d'définir son application réciproque.
- ➤ On appelle fonction argument cosinus hyperbolique, et on note :

$$Argch: [1, +\infty[ \rightarrow [0, +\infty[$$

$$x \mapsto Argchx$$

 $L'application\ r\'eciproque\ de\ la\ restriction\ de\ la\ fonction\ cosinus\ hyperbolique\ \grave{a}\ l'intervalle\ [0,+1[.$ 

- ► La fonction **Argch** est d'dérivable sur ]1,+1[ et pour tout  $x \in \mathbb{R}$ , Argch'(x) =  $\frac{1}{\sqrt{x-1^2}}$
- 3. Réciproque de la fonction tangente hyperbolique :
- ➤ La fonction th est continue et strictement croissante sur R, elle réalise donc une bijection de cet intervalle sur son image] 1, 1[ et on peut d'définir son application réciproque.
- *On appelle fonction argument tangente hyperbolique, et on note :*

$$Argth: ]-1,1[ \to \mathbb{R}$$
$$x \mapsto Argthx$$

L'application réciproque de la fonction tangente hyperbolique.

► La fonction **Argth** est d'dérivable sur ]-1, 1[ et pour tout  $x \in ]-1$ , 1[ :

$$Argth'(x) = \frac{1}{th'(Argthx)} = \frac{1}{1 - th^2(Argthx)}$$

et la conclusion vient du fait que  $th(Argth\ x) = x$ .

- 5. Identités et relations :
- 1. Quelques formules de trigonométrie hyperbolique :

Les formules de trigonométrie classiques ont des analogues en « trigonométrie hyperbolique ».

Outre la formule  $ch^2a - sh^2a = 1$ , on a par exemple

$$ch(a+b) = ch (a) ch (b) + sh (a) sh (b)$$

$$ch(a-b) = ch (a) ch (b) - sh (a) sh (b)$$

$$sh(a+b) = sh (a) ch (b) + ch (a) sh (b)$$

$$sh(a-b) = sh (a) ch (b) - ch (a) sh (b)$$

$$th(a+b) = \frac{th(a) + th(b)}{1 + th(a)th(b)}$$

$$th(a-b) = \frac{th(a) - th(b)}{1 - th(a)th(b)}$$

d'où l'on d'déduit

$$ch(2a) = ch^{2}(a) + sh^{2}(a) = 1 + 2sh^{2}(a)$$
  
 $sh(2a) = 2sh(a)ch(a)$   
 $th(2a) = \frac{2th(a)}{1 + th^{2}(a)}$ 

- 2. Expression des fonctions hyperboliques réciproques avec le logarithme népérien :
- 1. Pour tout  $x \in \mathbb{R}$ , on a  $Argshx = \ln(x + \sqrt{x^2 + 1})$
- 2. Pour tout  $x \ge 1$ , on  $a : Argchx = \ln(x + \sqrt{x^2 1})$
- 3. Pour tout  $x \in ]-1,1[$ , on  $a : Argthx = \frac{1}{2}\ln(\frac{1+x}{1-x})$