

Université de RELIZANE Faculté des Sciences et de la Technologie Département: Sciences biologiques

TD n° 4 Cinétique enzymatique Les inhibiteurs

Exercice n° 1

L'étude préliminaire de l'activité de deux enzymes (E1 et E2) vis-à-vis du même substrat donne les résultats suivants:

Tableau 1:

[S] mM	0,165	0,22	0,32	0,45	0,55
Enzyme 1[Vi] (µmol.min ⁻¹ .mg prt)	66	82	107	130	143
Enzyme-2[Vi] (µmol.min ⁻¹ .mg prt)	40	45	52	56,5	59

- -Tracez la courbe Vi= f(S), calculez la vitesse maximale et la K_m
- Quelle conclusion pouvez- vous en tirer ?

Exercice n° 2

La glutamate déshydrogénase est une enzyme michaélienne. On teste l'effet du salicylate sur cette enzyme.

Tableau 2:

[Glutamate] en mM	Vitesse sans salicylate en mg de produit.min ⁻¹	Vitesse avec salicylate en mg de produit.min ⁻¹
1.5	0,21	0,08
2	0,25	0,1
3	0,28	0,12
4	0,33	0,13
16	0,5	0,19

- **1.** Déterminez graphiquement à l'aide des données suivantes si l'inhibition est compétitive ou non compétitive.
- 2. Calculez les constantes cinétiques V_{max} et K_m de l'enzyme.

Exercice n° 3

Le pyruvate déshydrogénase et un complexe enzymatique, à partir de pyruvate, de NAD ⁺ et coenzyme A catalyse la décarboxylation oxydative en pyruvate pour donner de l'acétyl coenzyme A, Co₂ et du NADH. La formation de NADH peut être suivie facilement par mesure de l'absorbance à 340 nm. Le coefficient d'extinction molaire du NADH est égal à 622 M⁻¹.cm⁻¹.

Cette réaction est inhibée par le diacétyl (2,3 butanedione). Ce tableau donne les vitesses initiales de la réaction, exprimées en variation d'absorbance par min à 340, que l'on mesurée à différentes concentrations de pyruvate et en présence ou en absence de Diacyl.

Tableau 3:

	Pyruvate mM				
	25	50	100	200	400
[Diacétyl]=0	0,03	0,038	0,044	0,048	0,05
[Diacétyl]=0,5 mM	0,02	0,028	0,0375	0,044	0,048

- 1. Déterminer les vitesses maximales des réactions.
- 2. Les constantes de Michaelis en absence et présence d'inhibiteur.
- 3. En déduire le type d'inhibition du Diacétyl et constante d'inhibition correspondante.

Exercice n° 4

L'activité de Malonyl-CoA transacylase (E.C.2.3.1.39; [acyl-carrier protein] S-malonyltransférase) est inhibée par acétylcoenzyme A. Le tableau suivant donne les vitesses de la réaction pour différentes concentrations de malonyl-coenzyme A, en absence ou en présence de l'acétyl-CoA.

Tableau 4:

[Malonyl-CoA] en µmol	Vitesse de la réaction enzymatique en μmol.min ⁻¹ .mg de protéines				
	[Acétyl-CoA] 0 µmol	[Acétyl-CoA] 225 µmol	[Acétyl-CoA] 450 µmol		
8,5	0,25	0,10	0,06		
17	0,40	0,19	0,12		
25	0,50	0,25	0,17		
40	0,61	0,35	0,25		
60	0,70	0,45	0,33		
100	0,80	0,58	0,45		

- 1. A l'aide de la représentation de Lineweawer et Burk, déterminer la V_{max} et K_m en présence d'acétyl-CoA, puis en présence de cet inhibiteur.
- 2. Préciser le type d'inhibition.

Exercice 5:

Parmi les propositions suivantes, relevez la (ou les) proposition exactes(s). Une enzyme est placée en présence de concentrations en inhibiteur croissantes. Les représentation de *Lineweaver et Burke* nous donne faisceau de droites qui convergent en un seul point de l'axe des abscisses.

Lors que la concentration en inhibiteur est de 9.10^{-6} M, on obtient une valeur de K_i de 3.10^{-6} est une V_{max} de $4.10.^{-6}$.

- a. Quel type d'inhibiteur on a dans cette expériences selon les donnés.
- b. Calculer la V_{max} apparente.
- c. La V_{max} apparente dépend de la concentration en inhibiteur.
- d. Cet inhibiteur se fixe dans le site actif de l'enzyme.
- e. Le K_m est inchangé.