1 ère année Master: RSD Année: 2022/2023

Cours : Modélisation et évaluation des performances des systèmes

Chapitre 1 : Chaînes de Markov.

Partie 1 : Rappelle sur la théorie des probabilités

Modéliser une expérience aléatoire

Expérience aléatoire

Certaines expériences entraînent des résultats aléatoires, c'est-à-dire qui dépendent directement du hasard. Nous les appelons des **expériences aléatoires**. Dans la suite, \mathcal{E} désignera une expérience aléatoire.

En théorie des probabilités, le terme **modéliser** désigne l'opération qui consiste à associer à \mathcal{E} trois objets mathématiques, notés et appelés généralement Ω , l'univers, \mathcal{F} , l'ensemble des événements et \mathbb{P} , la probabilité.

Univers

Nous appelons **univers** associé à \mathcal{E} l'ensemble de tous les résultats possibles de \mathcal{E} . Généralement, l'univers est noté Ω .

Événement

Pour représenter les événements, il est d'usage d'utiliser la théorie des ensembles. Un **événement** est donc associé à un sous-ensemble de l'univers, l'ensemble des résultats pour lesquels l'événement est réalisé.

Ensemble des événements

Terminologie des événements :

- − Ø est appelé événement impossible.
- $-\Omega$ est appelé événement certain.
- Tout singleton $\{\omega\}$, où $\omega \in \Omega$, est appelé **événement élémentaire**.

Ensemble des événements

Nous appelons ensemble des événements associés à \mathcal{E} tout sous-ensemble \mathcal{F} de $\mathcal{P}(\Omega)$ vérifiant les trois propriétés suivantes :

- 1. \emptyset et $\Omega \in \mathcal{F}$;
- 2. si $A \in \mathcal{F}$, alors $A^c \in \mathcal{F}$;
- 3. soit I une partie finie ou infinie de \mathbb{N} ou de \mathbb{Z} . Si $(A_i)_{i \in I}$ est une suite d'événements de \mathcal{F} , alors $\bigcup_{i \in I} A_i \in \mathcal{F}$ et $\bigcap_{i \in I} A_i \in \mathcal{F}$.

Un ensemble d'événements vérifiant les trois propriétés ci-dessous est appelé une σ -algèbre ou une tribu.

Événement

Espace probabilisable

Nous appelons **espace probabilisable** lié à \mathcal{E} le couple (Ω, \mathcal{F}) , où Ω est l'ensemble des résultats possibles de \mathcal{E} et \mathcal{F} un ensemble des événements liés à \mathcal{E} .

Événements incompatibles

Nous appelons **événements incompatibles** ou **disjoints** deux événements A et B tels que $A \cap B = \emptyset$, c'est-à-dire qu'il est impossible que A et B se réalisent simultanément.

Probabilité

Nous appelons **probabilité** sur (Ω, \mathcal{F}) une application \mathbb{P} de \mathcal{F} dans [0,1] vérifiant les deux propriétés suivantes (axiomes de Kolmogorov)

- 1. $\mathbb{P}(\Omega) = 1$;
- 2. pour tout suite $(A_i)_{i\in I}$ finie ou infinie dénombrable d'événements de \mathcal{F} deux à deux incompatibles, nous avons

$$\mathbb{P}\left(\bigcup_{i\in I}A_i\right)=\sum_{i\in I}\mathbb{P}\left(A_i\right),\,$$

Espace probabilisé fini

Espace probabilisé fini

Nous appelons **espace probabilisé fini** associé à une expérience aléatoire \mathcal{E} le triplet $(\Omega, \mathcal{P}(\Omega), \mathbb{P})$, lorsque l'univers Ω est fini.

Espace probabilisé

Nous appelons **espace probabilisé** associé à une expérience aléatoire \mathcal{E} le triplet $(\Omega, \mathcal{F}, \mathbb{P})$, où Ω, \mathcal{F} et \mathbb{P} ont été définis dans la fiche 5.

Nous disons qu'il y a **équiprobabilité** lorsque les probabilités de tous les événements élémentaires sont égales.

Dans ce cas, \mathbb{P} est la probabilité uniforme sur $(\Omega, \mathcal{P}(\Omega))$.

Conséquence : S'il y a équiprobabilité, pour tout événement A, nous avons alors

$$\mathbb{P}(A) = \frac{\operatorname{Card}(A)}{\operatorname{Card}(\Omega)} = \frac{\text{nombre de cas favorables}}{\text{nombre de cas possibles}}$$

Probabilité conditionnelle

Definition

Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace probabilisé associé à \mathcal{E} . Soit A un événement de probabilité non nulle. Pour tout événement B, nous posons

$$\mathbb{P}(B|A) = \frac{\mathbb{P}(B \cap A)}{\mathbb{P}(A)}.$$

L'application qui à un événement $B \in \mathcal{F}$ associe $\mathbb{P}(B|A)$ est une probabilité sur (Ω, \mathcal{F}) , appelée **probabilité conditionnelle relative à** A ou **probabilité sachant** A.

Variables aléatoires réelles

Variable aléatoire réelle

Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace probabilisé. Nous appelons **variable aléatoire réelle** (v.a.r.) toute application de Ω dans \mathbb{R} telle que : pour tout intervalle I de \mathbb{R} , l'ensemble $X^{-1}(I) = \{\omega \in \Omega | X(\omega) \in I\}$ est un événement de \mathcal{F} .

Fonction de répartition

Soit X une variable aléatoire réelle définie sur un espace probabilisé $(\Omega, \mathcal{F}, \mathbb{P})$. Nous appelons **fonction de répartition de la variable aléatoire** X la fonction numérique réelle F_X définie par

$$\forall x \in \mathbb{R}, \quad F_X(x) = \mathbb{P}(X \leqslant x).$$

Variables aléatoires discrètes

Variable aléatoire discrète

Soit X une variable aléatoire réelle définie sur un espace probabilisé $(\Omega, \mathcal{F}, \mathbb{P})$. Nous appelons **variable aléatoire discrète** (v.a.d.) X si l'ensemble de ses valeurs $X(\Omega)$, est au plus dénombrable (voir la fiche 2 pour cette notion).

Loi d'une variable aléatoire discrète

Soit X une variable aléatoire réelle définie sur un espace probabilisé $(\Omega, \mathcal{F}, \mathbb{P})$. Nous appelons **loi de la variable aléatoire** X la donnée d'une suite numérique $(\mathbb{P}(X=k)=p_X(k))_{k\in X(\Omega)}$ telle que

- 1. $\forall k \in X(\Omega), \quad p_X(k) \geqslant 0$;
- $2. \sum_{k \in X(\Omega)} p_X(k) = 1 ;$
- 3. pour tout réel x, $\mathbb{P}(X \le x) = \sum_{k \le x} p_X(k)$ où $\sum_{k \le x}$ désigne la sommation sur l'ensemble des $k \in X(\Omega)$ inférieurs ou égaux à x.

Espérance mathématique Variance et écarttype

Espérance mathématique

Nous disons que la variable aléatoire X admet une espérance mathématique lorsque I est fini ou lorsque la série $\sum_{i} x_i p_X(x_i)$ est absolument convergente.

Nous appelons alors **espérance mathématique de** X, la moyenne pondérée notée $\mathbb{E}(X)$ et définie par

$$\mathbb{E}(X) = \sum_{i} x_i p_X(x_i).$$

Variance et écart-type

Nous disons que **la variable aléatoire discrète** *X* **admet une variance** lorsque *X* admet un moment centré d'ordre 2. Nous appelons alors **variance de** *X* la valeur

$$\operatorname{Var}(X) = \mathbb{E}\left((X - \mu)^2\right) = \mu m_2(X).$$

Nous la notons également σ^2 ou σ_X^2 s'il y a plusieurs variables aléatoires à distinguer.

Nous appelons **écart-type de** X la valeur $\sqrt{\mathbb{V}ar(X)}$, que nous noterons σ ou σ_X selon les cas.

Lois discrètes usuelles

Loi de Bernouilli de paramètre p

Loi de Bernoulli

Soit $p \in [0,1]$. Une variable aléatoire X suit une **loi de Bernoulli de paramètre** p, notée $\mathcal{B}(1,p)$, si la variable aléatoire X prend la valeur 1 avec la probabilité p et la valeur 0 avec la probabilité 1-p=q.

Propriétés

L'espérance et la variance d'une variable aléatoire X suivant une loi de Bernoulli de paramètre p sont égales respectivement à

$$\mathbb{E}(X) = p$$
 et $\mathbb{V}\operatorname{ar}(X) = p(1-p) = pq$ où $q = 1-p$.

Loi uniforme discrète

Loi uniforme discrète

Soit $n \in \mathbb{N}^*$. Une variable aléatoire X suit une **loi uniforme discrète** si la variable aléatoire X prend n valeurs possibles k_1, k_2, \ldots, k_n avec la probabilité égale à 1/n pour n'importe quelle valeur k_i .

Propriétés

Si X suit une loi uniforme discrète sur [a,b], alors nous avons

$$\mathbb{E}(X) = \frac{a+b}{2} \quad \text{et} \quad \mathbb{V}\text{ar}(X) = \frac{(b-a)(b-a+2)}{12}.$$

Loi binomiale

Loi binomiale

Soit n un entier naturel et $p \in [0,1]$. Une variable aléatoire X suit une **loi binomia- le de paramètres** n **et** p, notée $\mathcal{B}(n,p)$, si la variable aléatoire X prend la valeur k avec la probabilité égale à $\binom{n}{k} p^k (1-p)^{n-k}$. Nous notons q le nombre 1-p.

Cette loi caractérise le nombre de boules blanches obtenues dans un tirage **avec remise** de *n* boules dans une urne.

Stabilité pour la somme

Si $X_1, ..., X_m$ sont m variables aléatoires mutuellement indépendantes et si, pour tout entier $k \in [1, m]$, X_k suit la loi $\mathcal{B}(n_k, p)$ alors la variable aléatoire $\sum_{k=1}^m X_k$ suit

la loi
$$\mathcal{B}(n,p)$$
 où $n = \sum_{k=1}^{m} n_k$.

Propriétés

L'espérance et la variance d'une variable aléatoire X suivant une loi binomiale de paramètres n et p sont égales respectivement à :

$$\mathbb{E}(X) = np$$
 et $\mathbb{V}ar(X) = np(1-p) = npq$.

Loi de Poisson de paramètre λ

Loi de Poisson de paramètre λ

Loi de Poisson

Soit $\lambda > 0$. Une variable aléatoire X suit une **loi de Poisson de paramètre** λ , notée $\mathcal{P}(\lambda)$, si la variable aléatoire X prend la valeur $k, k \in \mathbb{N}$ avec la probabilité égale à $\exp(-\lambda)\frac{\lambda^k}{k!}$.

Propriétés

L'espérance et la variance d'une variable aléatoire suivant une loi de Poisson de paramètre λ sont égales respectivement à

$$\mathbb{E}(X) = \lambda$$
 et $\mathbb{V}ar(X) = \lambda$.

Variables aléatoires continues

Définitions

Variable aléatoire continue

Soit X une variable aléatoire réelle (v.a.r.) définie sur un espace probabilisé $(\Omega, \mathcal{F}, \mathbb{P})$. Nous disons que **la variable aléatoire** X **est continue** s'il existe une fonction f_X définie sur \mathbb{R} telle que

- $1. f_X(t) \geqslant 0$ pour tout $t \in \mathbb{R}$;
- 2. l'ensemble des points de discontinuités de f_X est fini et ces discontinuités sont de première espèce (i.e. la limite à gauche et à droite en chaque point existe);
- 3. pour tout x réel la fonction de répartition F_X de la variable X est donnée par

$$F_X(x) = \int_{-\infty}^x f_X(t) \, \mathrm{d}t.$$

Espérance mathématique

Espérance mathématique

Espérance mathématique

Nous disons que la variable aléatoire X admet une espérance mathématique si

l'intégrale $\int_{-\infty}^{+\infty} t f_X(t) dt$ converge absolument.

Nous appelons alors **espérance mathématique de** X, la valeur notée $\mathbb{E}(X)$ et définie par

$$\mathbb{E}(X) = \int_{-\infty}^{+\infty} t f_X(t) \, \mathrm{d}t.$$

Si deux variables aléatoires réelles X et Y admettent une espérance alors, pour tout $(a, b) \in \mathbb{R}^2$, $\mathbb{E}(aX + bY) = a \mathbb{E}(X) + b \mathbb{E}(Y)$.

Variance et écart-type

Variance et écart-type

Nous disons que X admet une variance lorsque X admet un moment centré d'ordre 2. Nous appelons alors variance de X la valeur

$$Var(X) = \mathbb{E}\left((X - \mu)^2\right) = \mu m_2(X).$$

Nous la notons également σ^2 ou σ_X^2 s'il y a plusieurs variables aléatoires à distinguer.

Nous appelons **écart-type de** X la valeur $\sqrt{\mathbb{V}ar(X)}$, que nous noterons σ ou σ_X selon les cas.

Théorème X admet une variance si et seulement si X^2 admet une espérance mathématique. La **formule de Huygens** est alors valable :

$$Var(X) = \mathbb{E}(X^2) - \mathbb{E}^2(X).$$

Lois continues

Loi uniforme continue U[a,b]

Définition

Une variable aléatoire X à valeurs dans [a, b], où a et b sont deux réels tels que a < b suit une **loi uniforme continue** sur [a, b], notée $\mathcal{U}[a, b]$, si X est une variable continue et admet pour densité de probabilité la fonction f_X suivante

$$f_X(t) = \begin{cases} \frac{1}{b-a} & \text{si} \quad a \leqslant t \leqslant b \\ 0 & \text{sinon} \end{cases}$$

Propriétés

1. La fonction de répartition d'une loi uniforme $\mathcal{U}[a,b]$ est égale à

$$F_X(x) = \begin{cases} 0 & \text{si } x < a \\ \frac{x - a}{b - a} & \text{si } a \le x \le b \\ 1 & \text{si } x > b \end{cases}$$

2. Soit X une variable aléatoire qui suit une loi uniforme $\mathcal{U}[a,b]$. Nous avons :

$$\mathbb{E}(X) = \frac{a+b}{2} \quad \text{et} \quad \mathbb{V}\text{ar}(X) = \frac{(b-a)^2}{12}.$$

Lois continues

Loi exponentielle $E(\lambda)$

Définition

Une variable aléatoire X à valeurs dans $[0,+\infty[$ suit une **loi exponentielle de paramètre** λ ($\lambda > 0$), notée $\mathcal{E}(\lambda)$, si X est une variable continue et admet pour densité de probabilité la fonction f_X suivante

$$f_X(t) = \begin{cases} \lambda \exp(-\lambda t) & \text{pour } t \ge 0 \\ 0 & \text{pour } t < 0 \end{cases}.$$

Propriétés

1. La fonction de répartition d'une loi exponentielle $\mathcal{E}(\lambda)$ est égale à

$$F_X(x) = \begin{cases} 1 - \exp(-\lambda x) & \text{si } x \ge 0 \\ 0 & \text{si } x \le 0 \end{cases}$$